
OVSDB Query Optimizer and 
Key-Value Interface
OVSCon December 8-10, 2020 | Dmitry Yusupov

NVIDIA



2 

The need for scalability

● Kubernetes as of v1.19 supports 5000 nodes in production

● Large topologies with 1000+ EPs, LBs, Namespaces, Policies?

● What about scaling beyond 5000, can we get to 10,000 HVs?

● Can we elastically distribute SDN topology compute and 
decentralized storage access as cluster growing?

Elasticity of SDN control plane? 



3 

OVN resourcing
Using different SKUs for central and HVs?

● Central components such as NorthD, RAFT OVSDB, CNI 
master can run on higher performance SKUs

● HV controllers can run on low profile SKUs, e.g. ARM devices 
with limited CPU and memory

● Can be beneficial for large DPU deployments, high-latency 
Edge IoT networks



4 

A deeper look at OVSDB
Current OVSDB design thoughts

● Emphasis on read I/O scalability with dynamic distributed 
caches, side effect – stale reads

● Simplistic RAFT-based cluster for HA, side effect – no read 
after write guarantee, slow writes

● In-memory, unique relational database with only UUID-based 
query optimizer



5 

Enhanced OVSDB Query Optimizer
Evolution of UUID-based optimizer

● Introduced Primary and Alternate key indexes [1]

● Reusing existing HMAP data structures

● Low overhead - 16 bytes per indexed key

● Results optionally can be ordered



6 

OVSDB Primary key design
Evolution of UUID-based optimizer

● There is no OVSDB schema change

● Using existing per-table “indexes” keyword works well as it 
has to be unique



7 

OVSDB Alternate key design
Evolution of UUID-based optimizer

● There is no such construct in OVSDB as of yet

● New boolean flag “alternate_key”: [true|false] introduced

● Alternate key implementation can use b-tree to enable 
ordered results, e.g. “ordered”:[“asc”|”desc”]



8 

OVSDB with Primary key performance
Measuring impact of using Primary key with small tables

Table size: 4,000 rows. In microseconds. No RAFT.

Update with --may-exist Find Delete
Current code 265 277 119
With Query Optimizer 89 104 75

● Linear scan avoided

● O(1) instead of O(N)



9 

OVSDB with Primary key performance
Measuring impact of using Primary key with larger tables

Table size: 60,000 rows. In microseconds. No RAFT.

Update with --may-exist Find Delete
Current code 6700 5270 5200
With Query Optimizer 123 105 84

● Linear scan avoided

● O(1) instead of O(N)

● Larger tables bigger impact



10 

Benefits of enabling Query Optimizer in OVN

Primary Key
● Helps with Updates and Selects performance
● OVN Northbound database performance benefits the most
● OVN Southbound database performance improved when 

custom monitors are used

Alternate Key
● Helps with complex Select queries performance
● Only when user or application executes non-UUID based 

complex queries



11 

Benefits of enabling Query Optimizer in OVN

● Linear scans are O(N) expensive, can we optimize it out a 
bit? Yes!

● OVN Northbound database can benefit transparently when 
enabled as below (query_primary would be linear search 
coverage counter):

If nothing else changed, just Primary key



12 

Applicability of Query Optimizer

● Benefits of KV interface are in simplicity and scalability

● OVSDB is a great piece of software, so, why not to try?

● OVSKV - a library that is layered on top of libovsdb [2]

● Compatible with ETCD like hierarchical key queries, e.g. 
/a/b/c* => value

An example of using it with Key-Value interface



13 

Comparison of ETCD and OVSKV
Using fperf open source performance toolkit [4]

Table size: 60,000 keys. In microseconds.

PUT GET DELETE
ETCD 20700 230 14000
OVSDB with KV 123 105 84

● 1-node OVSDB

● Using fperf OVSKV 
backend [3]



14 

Comparison of ETCD and OVSKV
Using fperf open source performance toolkit [4]

● 3-node OVSDB

● Using fperf OVSKV 
backend [3]

Table size: 60,000 keys. In microseconds.

PUT GET DELETE
ETCD 33400 415 18300
OVSDB with KV 21400 105 14500



15 

Future work and ideas

● Ordered Alternate key work needs to introduce b-tree 
implementation

● In the perspective of recent DDlog work, can we scale out 
computation with D3log?

● Perhaps we can think of introducing multi-writer design to 
OVSDB?

● What if we switch to Key-Value interfaces? Maybe just for 
some tables?

What’s next?



16 

Links and References

1. Primary key implementation OVS github repo
https://github.com/dyusupov/ovs/tree/query-optimizer-v1

2. OVSKV library github repo
https://github.com/dyusupov/ovskv

3. fperf for OVSKV backend github repo
https://github.com/dyusupov/fperf/tree/ovskv

4. fperf github repo
https://github.com/fperf/fperf

Show us the code...

https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/fperf/fperf

