0

y
A

OVSCon December 8-10, 2020 | Dmitry Yusupov

The need for scalability

Kubernetes as of v1.19 supports 5000 nodes in production
Large topologies with 1000+ EPs, LBs, Namespaces, Policies?

What about scaling beyond 5000, can we get to 10,000 HVs?

Can we elastically distribute SDN topology compute and
decentralized storage access as cluster growing?

OVN resourcing

Central components such as NorthD, RAFT OVSDB, CNI
master can run on higher performance SKUs

HV controllers can run on low profile SKUs, e.g. ARM devices
with limited CPU and memory

Can be beneficial for large DPU deployments, high-latency
Edge loT networks

A deeper look at OVSDB

Emphasis on read |/0 scalability with dynamic distributed
caches, side effect - stale reads

Simplistic RAFT-based cluster for HA, side effect - no read
after write guarantee, slow writes

In-memory, unique relational database with only UUID-based
query optimizer

Enhanced OVSDB Query Optimizer

Introduced Primary and Alternate key indexes [1]
Reusing existing HMAP data structures
Low overhead - 16 bytes per indexed key

Results optionally can be ordered

OVSDB Primary key design

e There is no OVSDB schema change

e Using existing per-table “indexes” keyword works well as it
has to be unique

"Address_Set": {
"columns": {
"name": {"type": "string"},
"addresses": {"type": {"key": "string",
"min": @

"max": "unlimited"}},

"external_ids": {
"type": {"key": "string", "value": "string",
"min": @, "max": "unlimited"}}},
"indexes": [["name"]],
"1sRoot": true},

OVSDB Alternate key design

e There is no such construct in OVSDB as of yet
e New boolean flag “alternate_key”: [true|false] introduced

e Alternate key implementation can use b-tree to enable
ordered results, e.g. “ordered”:[“asc” | "desc”]

"HA_Chassis": {

"columns": {
"chassis_name": {"type": "string", "alternate_key":true, "order":"asc"},

OVSDB with Primary key performance

Measuring impact of using Primary key with small tables

Table size: 4,000 rows. In microseconds. No RAFT.

Update with --may-exist Find Delete
Current code 265 277 119
With Query Optimizer 89 104 75

OVSDB with Query Optimizer (small tables)

B Update [Find Delete

| ol

Current code With Query Optimizer

e Linear scan avoided 300

200

e O(1) instead of O(N)

100

Latency, us

OVSDB with Primary key performance
Measuring impact of using Primary key with larger tables

Table size: 60,000 rows. In microseconds. No RAFT.

Update with --may-exist Find Delete
Current code 6700 5270 5200
With Query Optimizer 123 105 84

OVSDB with Query Optimizer (larger tables)
@ Update @ Find Delete

e Linear scan avoided 8000

6000

e O(1) instead of O(N)

4000

Latency, us

2000

e Larger tables bigger impact

o

—
Current code With Query Optimizer

Benefits of enabling Query Optimizer in OVN

e Helps with Updates and Selects performance

e OVN Northbound database performance benefits the most

e OVN Southbound database performance improved when
custom monitors are used

e Helps with complex Select queries performance
e Only when user or application executes non-UUID based
complex queries

Benefits of enabling Query Optimizer in OVN

e Linear scans are O(N) expensive, can we optimize it out a
bit? Yes!

e OVN Northbound database can benefit transparently when
enabled as below (query_primary would be linear search
coverage counter):

query_linear 0.0/sec 0.017/sec 0.0028/sec total: 10
query_uuid 30.8/sec 23.333/sec 0.4628/sec total: 1666

query_primary 10.4/sec 5.717/sec 0.0972/sec total: 350

Applicability of Query Optimizer

Benefits of KV interface are in simplicity and scalability
OVSDB is a great piece of software, so, why not to try?
OVSKY - a library that is layered on top of libovsdb [2]

Compatible with ETCD like hierarchical key queries, e.g.
/a/b/c* => value

Comparison of ETCD and OVSKV

Using fperf open source performance toolkit [4]

Table size: 60,000 keys. In microseconds.

PUT GET DELETE
ETCD 20700 230 14000
OVSDB with KV 123 105 84

ETCD vs OVSDB (1 node cluster)

B PUT B GET DELETE
25000

e 1-node OVSDB

20000

15000

e Using fperf OVSKV
backend [3]

10000

Latency, us

5000

o

——
ETCD OVSDB with KV

Comparison of ETCD and OVSKV
Using fperf open source performance toolkit [4]

Table size: 60,000 keys. In microseconds.

PUT GET DELETE
ETCD 33400 415 18300
OVSDB with KV 21400 105 14500

ETCD vs OVSDB (3-node RAFT cluster)

B PUT W GET DELETE

e 3-node OVSDB 40000

30000

e Using fperf OVSKV
backend [3]

20000

Latency, us

10000

|

o

ETCD OVSDB with KV

Future work and ideas

Ordered Alternate key work needs to introduce b-tree
implementation

In the perspective of recent DDlog work, can we scale out
computation with D3log?

Perhaps we can think of introducing multi-writer design to
OVSDB?

What if we switch to Key-Value interfaces? Maybe just for
some tables?

Links and References
Show us the code...

Primary key implementation OVS github repo
https://github.com/dyusupov/ovs/tree/query-optimizer-v1
OVSKY library github repo
https://github.com/dyusupov/ovsky

fperf for OVSKV backend github repo
https://github.com/dyusupov/fperf/tree/ovsky

fperf github repo

https://github.com/fperf/fperf

https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/dyusupov/ovs/tree/query-optimizer-v1
https://github.com/fperf/fperf

