ovn-architecture(7)

NAME

OpeviSwitch Manual ovn-architecture(7)

ovn-architecture — Open Virtual Network architecture

DESCRIPTION

OVN, the Open Virtual Netark, is a system to support virtual network abstract@®WN complements the
existing capabilities of OVS to add nati aupport for virtual network abstractions, such as virtual L2 and
L3 overlays and security groupsServices such as DHCP are also desirable features. &k O/N'’s
design goal is to v& a poduction-quality implementation that can operate at significant scale.

An OVN deployment consists of\s#al components:

A Cloud Management System (CMS), which is O/N’s utimate client (via its users and
administrators). N integration requires installing a CMS-specific plugin and related
software (see belg). OVN initially targets OpenStack as CMS.

We eenerally speak ofthe” CMS, but one can imagine scenarios in which multiple
CMSes manage different parts of an OVN deployment.

An OVN Database pfsical or virtual node (oreventually, cluster) installed in a central
location.

One or more (usually mgh hypervisors. Hypervisors must run Open vSwitch and
implement the interface describedliniegrationGuide.md in the OVS source treeAny
hypervisor platform supported by Open vSwitch is acceptable.

Zero or morggateways. A gaeway extends a tunnel-based logical netw into a plysi-

cal network by bidirectionally forarding packets between tunnels and a physical Ether
net port. This allers non-virtualized machines to participate in logical meks. Agdae-
way may be a physical host, a virtual machine, or an ASIC-based herdwitch that
supports theitep(5) schema. (Support for the latter will come later VNOmplementa-
tion.)

Hypervisors and gatesys are together calledansport node or chassis.

The diagram bele shows hav the major components of OVN and related software interact. Starting at the
top of the diagram, we hea

Open vSwitch 2.4.90

The Cloud Management System, as defined@bo

The OVN/CMS Plugin is the component of the CMS that interfaces ¥NO In Open-
Stack, this is a Neutron pluginThe plugins main purpose is to translate the CES’
notion of logical netwrk configuration, stored in the CMStonfiguration database in a
CMS-specific format, into an intermediate representation understood by OVN.

This component is necessarily CMS-specific, sova plagin needs to be #eloped for
each CMS that is integrated with/@. All of the components belothis one in the dia-
gram are CMS-independent.

The OVN Northbound Database receves the intermediate representation of logical net-
work configuration passed down by the OVN/CMS Plugifhe database schema is
meant to be “impedance matched'ith the concepts used in a CMS, so that it directly
supports notions of logical switches, router$LA&, and so on.Seeovn—nb(5) for
details.

The OVN Northbound Database has only ®lients: the OVN/CMS Plugin alve it and
ovn—northd below it.

ovn—northd(8) connects to the OVN Northbound Databasevalicand the OVN South-
bound Database belait. It translates the logical network configuration in terms of con-
ventional network concepts, taken from the OVN Northbound Database, into logical data-
path flows in the OVN Southbound Database Wweto

The OVN Southbound Database is the center of the system. Its clients are
ovn—northd (8) abare it and ovn—controller(8) on &ery transport node beloit.

OVN Architecture 1

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

The O/N Southbound Database contains three kinds of digsical Network (PN)
tables that specify oto reach hypervisor and other nodesgical Network (LN) tables
that describe the logical network in terms'‘lfgical datapath flars;” and Binding tables
that link logical netwrk components’ locations to the physical natkv Thehypervisors
populate the PN and Port_Binding tables, whemas-northd(8) populates the LN
tables.

OVN Southbound Database performance must scale with the number of transport nodes.
This will likely require some work omvsdb-sewer(1) as we encounter bottlenecks.
Clustering for gailability may be needed.

The remaining components are replicated onto each hypervisor:

. ovn—controller(8) is O/N’s agent on each hypervisor and softwamegay. North-
bound, it connects to the OVN Southbound Database to learn akdut@nfiguration
and status and to populate the PN table an€Hassiscolumn inBinding table with the
hypervisors datus. Southboundt connects taovs—-vswitchd8) as an OpenHmo con-
troller, for control wer network traffic, and to the locadtvsdb—sewer (1) to allaw it to
monitor and control Open vSwitch configuration.

. ovs-vswitchd8) andovsdb-sewer (1) are comentional components of Open vSwitch.

CMS

I
I
| +
I I
O VN/CMS Plugin |
I I
I I
O VN Northbound DB |
I I
I I

o vn—-northd |

I I
+ | +
I
I

| OVN Southbound DB |

1
-+ -

+

I I I
| | HV n |
I + ot I +
I I o I |
0 vn-controller | o 0 vn-controller |
I I I . I I I
I I I I I I I

o vs-vswitchd ovsdb-server | | ovs—vswitchd ovsdb-server |

HV 1

—_——

1 Il Il
-+ - -

+

Chassis Setup
Each chassis in anM® deployment must be configured with an Open vSwitch bridge dedicated/fgs O
use, called theintegration bridge. System startup scripts may create this bridge prior to starting

Open vSwitch 2.4.90 OVN Architecture 2

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

ovn—controller if desired. If this bridge does not exist when ovn-controller starts, it will be created auto-
matically with the default configuration suggested Wweldhe ports on the integration bridge include:

. On ary chassis, tunnel ports that OVN uses to maintain logical network cowvitecti
ovn—controller adds, updates, and rewes these tunnel ports.

. On a typervisor any VIFs that are to be attached to logical rekg. Thehypervisor
itself, or the intgration between Open vSwitch and the hypervisor (describkedeigra-
tionGuide.md) takes care of this. (This is not part of OVN omn® OVN; this is pre-
existing integration work that has already been done on hypervisors that support OVS.)

. On a @teway, the physical port used for logical network connggti System startup
scripts add this port to the bridge prior to startavg—controller. This can be a patch
port to another bridge, instead of a physical port, in more sophisticated setups.

Other ports should not be attached to thegiation bridge. In particulaphysical ports attached to the
underlay network (as opposed tat@vay ports, which are physical ports attached to logical networks) must

not be attached to the integration bridge. Underlay physical ports should instead be attached to a separate
Open vSwitch bridge (tlyeneed not be attached toyaoridge at all, in fact).

The integration bridge should be configured as described/béloe effect of each of these settings is doc-
umented irovs-vswitchd.conf.di{5):

fail-mode=secure
Avoids switching pacts between isolated logical networks befwve—controller starts
up. SeeController Failur e Settingsin ovs—vsct(8) for more information.

other—config:disable—in—band=true
Suppresses in-band control flows for the integration bridge. It would be unusual for such
flows to shav up anyway, because OVN uses a local controllevdoa Unix domain
soclet) instead of a remote controlldt’s possible, havever, for some other bridge in the
same system to Wia an in-band remote controlleand in that case this suppresses the
flows that in-band control would ordinarily set upSee In-Band Control in
DESIGN.md for more information.

The customary name for the integration bridgerisnt , but another name may be used.

Logical Networks
A logical network implements the same concepts as physical networks, hutathdnsulated from the
physical network with tunnels or other encapsulations. This allows logical networksdospmrate IP
and other address spaces thagrlap, without conflicting, with those used forysical netvorks. Logical
network topologies can be arranged withougae for the topologies of the physical networks on which

they run.
Logical network concepts in OVN include:
. Logical switches, the logical version of Ethernet switches.
. Logical routers, the logical version of IP routerd.ogical switches and routers can be

connected into sophisticated topologies.

. Logical datapaths are the logical version of an OpenWwlswitch. Logicalswitches and
routers are both implemented as logical datapaths.

Life Cycle of a VIF
Tables and their schemas presented in isolation are difficult to understands dtesgimple.

A VIF on a hypervisor is a virtual netvk interface attached either to a VM or a container running directly
on that hypervisor (This is different from the interface of a container running inside a VM).

The steps in thisxample refer often to details of the OVN and OVN Northbound database schRlease
seeovn-sh(5) andovn—nb(5), respectiely, for the full story on these databases.

1. AVIF's life cycle bgins when a CMS administrator creates & MF using the CMS user
interface or APl and adds it to a switch (one implemented W) @s a logical switch).The

Open vSwitch 2.4.90 OVN Architecture 3

ovn-architecture(7)

10.

11.

12.

13.

OpeviSwitch Manual ovn-architecture(7)

CMS updates its own configuratiofthis includes associating unique, persistent identiffer
id and Ethernet addressac with the VIF.

The CMS plugin updates the OVN Northbound database to includewh¥Ifeby adding a

row to the Logical_Port table. Inthe n&v row, nameis vif-id, mac is mac, switch points to

the OVN logical switcts Logical_Switch record, and other columns are initialized appropri-
ately.

ovn—northd receves the OVN Northbound database update. turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN Southbound
databasé ogical_Flow table to reflect the meport, e.g. add a fle to recognize that paeits
destined to the me port's MAC address should be dedred to it, and update the Wothat

delivers broadcast and multicast patkto include the meport. Italso creates a record in the
Binding table and populates all its columns except the column that identifielabsis

On eery hypervisor, ovn—controller receves the Logical Flow table updates that
ovn—northd made in the previous step. As long as the VM thaisthe VIF is powered Hf
ovn—controller cannot do much; it cannot, foxample, arrange to send packets to or wecei
packets from the VIFbecause the VIF does not actually exist anywhere.

Eventually auser powers on the VM that owns the VIBn the hypervisor where the VM is
powered on, the integration between tlypérvisor and Open vSwitch (describedntegra-
tionGuide.md) adds the VIF to the @N integration bridge and storesf-id in exter-
nal-ids:iface—id to indicate that the inteate is an instantiation of thewm&IF. (None of this
code is n& in OVN; this is pre-existing integration work that has already been dongpan-h
visors that support OVS.)

On the hypervisor where the VM is wered on, ovn—controller notices exter-

nal-ids:iface—id in the nev Interface. Inresponse, it updates the localpkrvisors Open-
Flow tables so that packets to and from the VIF are properly handRetward, in the N

Southbound DB, it updates tBénding table’schassiscolumn for the rav that links the logi-
cal port fromexternal-idsiface—id to the hypervisor.

Some CMS systems, including OpenStack, fully start a VM only when itsoriehg is
ready To support this,ovn—northd notices thechassiscolumn updated for the woin Bind-
ing table and pushes this upmd by updating thep column in the OVN Northbound data-
base’sLogical_Port table to indicate that the VIF iswaup. TheCMS, if it uses this feature,
can then react by allowing the V#§é&ecution to proceed.

On every hypervisor but the one where the VIF resideg)—controller notices the com-
pletely populated o in the Binding table. Thisprovidesovn—controller the physical loca-
tion of the logical port, so each instance updates the Openéhides of its switch (based on
logical datapath flows in the OVN DBogical_Flow table) so that packets to and from the
VIF can be properly handled via tunnels.

Eventually a iser powers dfthe VM that owns the VIFOn the hypervisor where the VM
was powered off, the VIF is deleted from the OVN integration bridge.

On the hypervisor where the VM was poweref] ofn—controller notices that the VIF as
deleted. Irresponse, it remwes the Chassiscolumn content in thBinding table for the logi-
cal port.

On every hypervisor,ovn—controller notices the emptghassiscolumn in theBinding ta-
ble’s row for the logical port.This means thadtvn—controller no longer knows the psical
location of the logical port, so each instance updates its Opetéidte to reflect that.

Eventuallywhen the VIF (or its entire VM) is no longer needed by anyone, an administrator
deletes the VIF using the CMS user interface or AFHe CMS updates its own configura-
tion.

The CMS plugin remees the VIF from the OVN Northbound database, by deleting itsiro
theLogical_Port table.

Open vSwitch 2.4.90 OVN Architecture 4

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

14. ovn—northd receves the OVN Northbound update and in turn updates the OVN Southbound
database accordingligy removing or updating the rows from the OVN Southbound database
Logical_Flow table andinding table that were related to the now-destroyed VIF.

15. On eery hypervisor, ovn—controller receves the Logical Flow table updates that
ovn—northd made in the previous stevn—controller updates OpenFo tables to reflect
the update, although there may not be much to do, since the VIF had already become unreach-
able when it was renved from theBinding table in a previous step.

Life Cycle of a Container Interface Inside a VM
OVN provides virtual netwrk abstractions by cesrting information written in OVN_NB database to
OpenFlav flows in each typervisor Secure virtual networking for multi-tenants can only bevjued if
OVN controller is the only entity that can modify flows in Open vSwitch. When the Open vSwitghainte
tion bridge resides in theypervisor it is a fair assumption to makthat tenant workloads running inside
VMs cannot mak any changes to Open vSwitch flows.

If the infrastructure provider trusts the applications inside the containers not to break out and modify the
Open vSwitch flows, then containers can be runyjpehvisors. Thids also the case when containers are

run inside the VMs and Open vSwitch integration bridge with flows added/blydontroller resides in the

same VM. For both the abee @ases, the erkflow is the same as explained with a@mple in the prdous

section ("Life Cycle of a VIF").

This section talks about the life cycle of a container interface (CIF) when containers are created in the VMs
and the Open vSwitch integration bridge resides inside ypertisor In this case, wen if a container
application breaks out, other tenants are nfectdd because the containers running inside the VMs cannot
modify the flows in the Open vSwitch integration bridge.

When multiple containers are created inside a VM, there are multiple CIFs associated with them. The net-
work traffic associated with these CIFs need to reach the Open vSwitch integration bridge running in the
hypervisor for OVN to support virtual network abstractio®/N should also be able to distinguish net-

work traffic coming from different CIFs. There areaways to distinguish network traffic of CIFs.

One way is to pnade one VIF for gery CIF (1:1 model). This means that there could be a lot ofark&tw
devices in the fipervisor This would slev down OVS because of all the additional CPU cycles needed for
the management of all the VIFs. Ibuld also mean that the entity creating the containers in a VM should
also be able to create the corresponding VIFs in the hypervisor.

The second way is to provide a single VIF for all the CIFs (lynmaodel). O/N could then distinguish
network trafic coming from different CIFs via a tag written imegy paclet. O/N uses this mechanism
and uses VLAN as the tagging mechanism.

1. A CIF's life cycle begins when a container is wpad inside a VM by the either the same
CMS that created the VM or a tenant thaie that VM or gen a container Orchestration
System that is different than the CMS that initially created the Whoever the entity is, it
will need to knav the vif-id that is associated with the network interface of the VM through
which the container inteates network traffic is epected to go through. The entity that cre-
ates the container interface will also need to choose an unused VLAN inside that VM.

2. The container spening entity (either directly or through the CMS that manages the underly-
ing infrastructure) updates the OVN Northbound database to includevitel Reby adding a
row to the Logical_Port table. Inthe nev row, nameis ary unique identifierparent_name
is thevif-id of the VM through which the CIB'network traffic is expected to go through and
thetag is the VLAN tag that identifies the network traffic of that CIF.

3. ovn—northd receives the OVN Northbound database update. turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN Southbound
database’d ogical_Flow table to reflect the meport and also by creating aweow in the
Binding table and populating all its columns except the column that identifiehssis

4. On esery hypervisor,ovn—controller subscribes to the changes in Biading table. Whera
new row is aeated byovn—northd that includes a value iparent_port column ofBinding

Open vSwitch 2.4.90 OVN Architecture 5

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

table, theovn—controller in the hypervisor whose \ON integration bridge has that same
vaue in vif-id in external-idsiface—id updates the localypervisors OpenFlav tables so
that packts to and from the VIF with the particular VLAtEg are properly handledAfter-
ward it updates thehassiscolumn of theBinding to reflect the physical location.

5. One can only start the application inside the container after the underlying network is ready
To wpport this,ovn—northd notices the updatedhassiscolumn in Binding table and
updates theip column in the OVN Northbound databaskogical_Port table to indicate that
the CIF is nw up. Theentity responsible to start the container application queriesahis v
and starts the application.

6. Ewentually the entity that created and started the contadogs it. The entitythrough the
CMS (or directly) deletes its woin the Logical_Port table.

7. ovn—northd receves the OVN Northbound update and in turn updates the OVN Southbound
database accordingligy removing or updating the rows from the OVN Southbound database
Logical_Flow table that were related to thewalestroyed CIE It also deletes the woin the
Binding table for that CIF.

8. On every hypervisor, ovn—controller receves the Logical Flow table updates that
ovn—northd made in the previous stevn—controller updates OpenFlo tables to reflect
the update.

Architectural Life Cycle of a Packet
This section describes Wwa paclet travels from one virtual machine or container to another througN.O
This description focuses on the physical treatment of a packet; for a description of the logical life cycle of a
packet, please refer to thegical_Flow table inovn—sh(5).

This section mentions g&ral data and metadata fields, for clarity summarized here:

tunnel ley
When OVN encapsulates a packet in Geng another tunnel, it attaches extra data to it
to allow the receiving OVN instance to process it correcihis tales different forms
depending on the particular encapsulatian,ib each case we refer to it here as tha-
nel key” SeeTunnel Encapsulations below, for details.

logical datapath field
A field that denotes the logical datapath through which a packet is being proc@gdéd.
uses the field that OpenkldL.1+ simply (and confusingly) callsrietadatd’to store the
logical datapath. (This field is passed across tunnels as part of the teyanel k

logical input port field
A field that denotes the logical port from which the packet entered the logical datapath.
OVN stores this in Nicira xtension register number 6. (This field is passed across tun-
nels as part of the tunnedk)

logical output port field
A field that denotes the logical port from which the packet willdetae logical datapath.
This is initialized to O at the beginning of the logical ingress pipeldéN stores this in
Nicira extension register number 7. (This field is passed across tunnels as part of the tun-
nel key)

VLAN ID
The VLAN ID is used as an intexfe between OVN and containers nested inside a VM
(seelLife Cycle of a container interface inside a VM above, for more information).

Initially, a VM or container on the ingress hypervisor sends a packet on a port attached to the Qk&N inte
tion bridge. Then:

1. OpenFlav table 0 performs physical-to-logical translation. It matches thegbackgress
port. Itsactions annotate the patkwith logical metadata, by setting the logical datapath field
to identify the logical datapath that the petls traversing and the logical input port field to

Open vSwitch 2.4.90 OVN Architecture 6

ovn-architecture(7)

OpeviSwitch Manual ovn-architecture(7)

identify the ingress port. Then it resubmits to table 16 to enter the logical ingress pipeline.

It's possible that a single ingressygital port maps to multiple logical ports with a type of
localnet The logical datapath and logical input port fields will be reset and thetpaitkbe
resubmitted to table 16 multiple times.

Packets that originate from a container nested within a VM are treated in a sligifilsenif

way. The originating container can be distinguished based on the VIF-specific VLAN ID, so
the physical-to-logical translation flows additionally match on VLAN ID and the actions strip
the VLAN header Following this step, OVN treats packets from containers justdily ather
packets.

Table 0 also processes patk that arkie from other chassis. It distinguishes them from other
paclets by ingress port, which is a tunnel. As with gaskust entering the OVN pipeline,
the actions annotate these patskwith logical datapath and logical ingress port metadata.
addition, the actions set the logical output port field, whiclvadadle because in OVN tun-
neling occurs after the logical output port is Wmo Thesethree pieces of information are
obtained from the tunnel encapsulation metadata Tseeel Encapsulationsfor encoding
details). Therhe actions resubmit to table 33 to enter the logical egress pipeline.

OpenFlav tables 16 through 31xecute the logical ingress pipeline from thegical_Flow

table in the OVN Southbound database. These tables are expressed entirely in terms of logi-
cal concepts li& logical ports and logical datapath&.big part ofovn—controller’s job is to
translate them into equilent OpenFlav (in particular it translates the table numbérsgi-
cal_Flow tables 0 through 15 become Openflables 16 through 31)For a gven packet,

the logical ingress pipelinezentually executes zero or moreutput actions:

. If the pipeline &ecutes nautput actions at all, the packet is effedy dropped.

. Most commonly the pipeline recutes oneoutput action, whichovn—controller
implements by resubmitting the packet to table 32.

. If the pipeline canxecute more than oneutput action, then each one is separately
resubmitted to table 32. This can be used to send multiple copies of thet fmack
multiple ports. (If the packet was not modified between théput actions, and
some of the copies are destined to the sayperirisor then using a logical multicast
output port would sz bandwidth between hypervisors.)

OpenFlav tables 32 through 47 implement thetput action in the logical ingress pipeline.
Specifically table 32 handles packets to remote hypervisors, table 33 handlesspacthe
local hypervisor and table 34 discards paets whose logical ingress and egress port are the
same.

Each flav in table 32 matches on a logical output port for unicast or multicast logical ports
that include a logical port on a remotgpkrvisor Each flav’'s actions implement sending a
paclet to the port it matcheskFor unicast logical output ports on remote hypervisors, the
actions set the tunneky © the correct value, then send the petobn the tunnel port to the
correct lypervisor (When the remote hypervisor reees the packet, table 0 there will recog-
nize it as a tunneled packet and pass it along to tableF8Bnulticast logical output ports,

the actions send one gopf the packet to each remotgpervisor in the same way as for uni-
cast destinations. If a multicast group includes a logical port or ports on theypeavigor,

then its actions also resubmit to table Jable 32 also includes a fallbackwlahat resubmits

to table 33 if there is no other match.

Flows in table 33 resemble those in table 32 but for logical ports that reside locally rather than
remotely (This includes logical patch ports, which do notéa fhysical location and &c-

tively reside on eery hypervisor) For unicast logical output ports on the locgphrvisor the
actions just resubmit to table 3&or multicast output ports that include one or more logical
ports on the localypervisor for each such logical poR, the actions change the logical out-

put port toP, then resubmit to table 34.

Open vSwitch 2.4.90 OVN Architecture 7

ovn-architecture(7)

OpeviSwitch Manual ovn-architecture(7)

Table 34 matches and drops patkfor which the logical input and output ports are the same.
It resubmits other packets to table 48.

OpenFlav tables 48 through 63ecute the logical egress pipeline from thegical_Flow ta-
ble in the OVN Southbound databageéhe egress pipeline can perform a final stageabfia-
tion before packet dery. Eventually, it may execute anoutput action, whichovn-con-
troller implements by resubmitting to table 6A. packet for which the pipeline wer exe-
cutesoutput is efectively dropped (although it may tia been transmitted through a tunnel
across a physical network).

The egress pipeline cannot change the logical output port or cause further tunneling.

OpenFlav table 64 performs logical-to-physical translation, the opposite of tabldé O.
matches the paek's logical egress port. Its actions output the packet to the port attached to
the OVN intgration bridge that represents that logical port. If the logical egress port is a con-
tainer nested with a VM, then before sending the packet the actions push on a VLAN header
with an appropriate VLAN ID.

If the logical egress port is a logical patch port, then table 64 outputs tv@&rp&ch port
that represents the logical patch port. The paok-enters the Openkdiow table from the
OVS patch ports peer in table 0, which identifies the logical datapath and logical input port
based on the OVS patch psr©penFlav port number.

Life Cycle of a VTEP gateway
A gateway is a dassis that forwards traffic between the OVN-managed part of a logicadrkednwd a
physical VLAN, extending a tunnel-based logical network into a physical network.

The steps belo refer often to details of the\M and VTEP database schemas. Pleaseogeesh(5),
ovn—nb(5) andvtep(5), respectiely, for the full story on these databases.

1.

A VTEP agatevay’s life cycle begins with the administratogistering the VTEP gtavay as a
Physical_Switchtable entry in th&/ TEP database. Thevn-controller-vtep connected to
this VTEP database, will recognize them\éTEP catevay and create a ne Chassistable
entry for it in theOVN_Southbounddatabase.

The administrator can then create avrieogical_Switch table entry and bind a particular
vlan on a VTEP gtevay’s port to ary VTEP logical switch.Once a VTEP logical switch is
bound to a VTEP aewvay, the ovn—controller—vtep will detect it and add its name to the
vtep_logical_switches column of theChassistable in theOVN_Southbounddatabase. Note,
the tunnel_key column of VTEP logical switch is not filled at creatioithe ovn-con-
troller-vtep will set the column when the correponding vtep logical switch is bound to an
OVN logical network.

Now, the administrator can use the CMS to add a VTEP logical switch to the OVN logical
network. To do that, the CMS must first create awnéogical_Port table entry in the
OVN_Northbound database. Therthe type column of this entry must be set to "vtep".
Next, the vtep-logical-switch and vtep-physical-switch keys in theoptions column must also

be specified, since multiple VTEP gasgs can attach to the same VTEP logical switch.

The newly created logical port in ti@/N_Northbound database and its configuration will

be passed aen to theOVN_Southbounddatabase as awePort_Binding table entry The
ovn—controller-vtep will recognize the change and bind the logical port to the corresponding
VTEP cptevay chassis. Configuratioaf binding the same VTEP logical switch to afeliént

OVN logical networks is not allowed and a warning will be generated in the log.

Beside binding to the VTEPatpvay chassis, thevn—controller—vtep will update thetun-
nel_key column of the VTEP logical switch to the correspondidatapath_Binding table
entry'stunnel_key for the bound OVN logical network.

Next, the ovn—controller-vtep will keep reacting to the configuration change in the
Port_Binding in the OVN_Northbound database, and updating thleast Macs_Remote
table in theVTEP database. Thiallows the VTEP gtewvay to understand where to foawd

Open vSwitch 2.4.90 OVN Architecture 8

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

the unicast traffic coming from the extended external network.

7. Eventuallythe VTEP @tavay’s life cycle ends when the administrator giséers the VTEP
gaeway from theVTEP database. Thevn—controller—vtep will recognize the eent and
remove dl related configurationsQhassistable entry and port bindings) in t®/N_South-
bound database.

8. When theovn—controller-vtep is terminated, all related configurations in B¥N_South-
bound database and théTEP database will be cleaned, includi@ipassistable entries for
all registered VTEP aevays and their port bindings, and a&licast Macs_Remotdable
entries and theogical_Switchtunnel leys.

DESIGN DECISIONS
Tunnel Encapsulations
OVN annotates logical network packets that it sends from gperkisor to another with the follng
three pieces of metadata, which are encoded in an encapsulation-specific fashion:

. 24-bit logical datapath identifiefrom thetunnel_key column in the ®N Southbound
Datapath_Binding table.

. 15-bit logical ingress port identifietD O is resened for internal use within \@N. IDs 1
through 32767, incluge, may be assigned to logical ports (seettirel_key column in
the OVN Southboun®ort_Binding table).

. 16-bit logical gress port identifierIDs O through 32767 ka the same meaning as for
logical ingress portslDs 32768 through 65535, inclusj may be assigned to logical
multicast groups (see ttiennel_key column in the OVN Southbourdulticast_Group

table).
For hypervisor-to-lypervisor traffic, OVN supports only Gereeand STT encapsulations, for the fallmg
reasons:
. Only STT and Gene support the large amounts of metadatee{B2 hts per packt)
that OVN uses (as described abpo
. STT and Genee use randomized UDP or TCP source ports that allows efficient distrib
tion among multiple paths in environments that use ECMP in their underlay.
. NICs are gailable to offload STT and Gewe encapsulation and decapsulation.

Due to its flaibility, the preferred encapsulation between hypervisors isv@er®r Genge encapsula-
tion, OVN transmits the logical datapath identifier in the @enéNl. OVN transmits the logical ingress
and logical egress ports in aVlwith class 0xff, type 0, and a 32-bit value encoded as follows, from
MSB to LSB:

1 15 16
’ rsv| ingress porF egess port

Ervironments whose NICs lack Gemedfload may prefer STT encapsulation for performance reasons.
For STT encapsulation, @YN encodes all three pieces of logical metadata in the STT 64-bit tunnel ID as
follows, from MSB to LSB:

9 15 16 24
]reservepingress porF egess port| datapath

For connecting to gteavays, in addition to Gene and STT, OVN supports VXLAN, because only VXLAN
support is common on top-of-rackoff) switches.Currently gatevays hare a ature set that matches the
capabilities as defined by the VTEP schema, seeffebits of metadata are necessaly the future,

Open vSwitch 2.4.90 OVN Architecture 9

ovn-architecture(7) OpeviSwitch Manual ovn-architecture(7)

gaeways that do not support encapsulations witlgéaamounts of metadata may continue teeha
reduced feature set.

Open vSwitch 2.4.90 OVN Architecture 10

