
ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

NAME
ovn-sb − OVN_Southbound database schema

This database holds logical and physical configuration and state for the Open Virtual Network (OVN) sys-
tem to support virtual network abstraction.For an introduction to OVN, please seeovn−architecture(7).

The OVN Southbound database sits at the center of the OVN architecture. It is the one component that
speaks both southbound directly to all the hypervisors and gateways, via ovn−controller /ovn−con-
troller−vtep , and northbound to the Cloud Management System, viaovn−northd :

Database Structure
The OVN Southbound database contains three classes of data with different properties, as described in the
sections below.

Physical Network (PN) data

PN tables contain information about the chassis nodes in the system. This contains all the information nec-
essary to wire the overlay, such as IP addresses, supported tunnel types, and security keys.

The amount of PN data is small (O(n) in the number of chassis) and it changes infrequently, so it can be
replicated to every chassis.

TheChassistable comprises the PN tables.

Logical Network (LN) data

LN tables contain the topology of logical switches and routers, ACLs, firewall rules, and everything needed
to describe how packets traverse a logical network, represented as logical datapath flows (see Logical Data-
path Flows, below).

LN data may be large (O(n) in the number of logical ports, ACL rules, etc.). Thus, to improve scaling, each
chassis should receive only data related to logical networks in which that chassis participates.Past experi-
ence shows that in the presence of large logical networks, even finer-grained partitioning of data, e.g.
designing logical flows so that only the chassis hosting a logical port needs related flows, pays off scale-
wise. (Thisis not necessary initially but it is worth bearing in mind in the design.)

The LN is a slave of the cloud management system running northbound of OVN. ThatCMS determines the
entire OVN logical configuration and therefore the LN’s content at any giv en time is a deterministic func-
tion of the CMS’s configuration, although that happens indirectly via theOVN_Northbound database and
ovn−northd .

LN data is likely to change more quickly than PN data.This is especially true in a container environment
where VMs are created and destroyed (and therefore added to and deleted from logical switches) quickly.

Logical_Flow andMulticast_Group contain LN data.

Bindings data

Bindings data link logical and physical components.They show the current placement of logical compo-
nents (such as VMs and VIFs) onto chassis, and map logical entities to the values that represent them in
tunnel encapsulations.

Bindings change frequently, at least every time a VM powers up or down or migrates, and especially
quickly in a container environment. Theamount of data per VM (or VIF) is small.

Each chassis is authoritative about the VMs and VIFs that it hosts at any giv en time and can efficiently
flood that state to a central location, so the consistency needs are minimal.

ThePort_Binding andDatapath_Binding tables contain binding data.

Common Columns
Some tables contain a special column namedexternal_ids. This column has the same form and purpose
each place that it appears, so we describe it here to save space later.

Open vSwitch 2.4.90 DB Schema 1.0.0 1

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

external_ids: map of string-string pairs
Ke y-value pairs for use by the software that manages the OVN Southbound database
rather than byovn−controller /ovn−controller−vtep. In particular,ovn−northd can use
key-value pairs in this column to relate entities in the southbound database to higher-level
entities (such as entities in the OVN Northbound database).Individual key-value pairs in
this column may be documented in some cases to aid in understanding and troubleshoot-
ing, but the reader should not mistake such documentation as comprehensive.

TABLE SUMMARY
The following list summarizes the purpose of each of the tables in theOVN_Southbounddatabase. Each
table is described in more detail on a later page.

Table Purpose
Chassis Physical Network Hypervisor and Gateway Information
Encap Encapsulation Types
Logical_Flow Logical Network Flows
Multicast_Group

Logical Port Multicast Groups
Datapath_Binding

Physical-Logical Datapath Bindings
Port_Binding Physical-Logical Port Bindings

Open vSwitch 2.4.90 DB Schema 1.0.0 2

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

TABLE RELATIONSHIPS
The following diagram shows the relationship among tables in the database. Each node represents a table.
Tables that are part of the ‘‘root set’’ are shown with double borders. Each edge leads from the table that
contains it and points to the table that its value represents. Edges are labeled with their column names, fol-
lowed by a constraint on the number of allowed values:? for zero or one,* for zero or more,+ for one or
more. Thicklines represent strong references; thin lines represent weak references.

Datapath_Binding

Logical_Flow

Multicast_Group

Port_Binding

Chassis Encap

logical_datapath

datapath

ports+
datapath

chassis? encaps+

Open vSwitch 2.4.90 DB Schema 1.0.0 3

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Chassis TABLE
Each row in this table represents a hypervisor or gateway (a chassis) in the physical network (PN).Each
chassis, viaovn−controller /ovn−controller−vtep, adds and updates its own row, and keeps a copy of the
remaining rows to determine how to reach other hypervisors.

When a chassis shuts down gracefully, it should remove its own row. (This is not critical because resources
hosted on the chassis are equally unreachable regardless of whether the row is present.) Ifa chassis shuts
down permanently without removing its row, some kind of manual or automatic cleanup is eventually
needed; we can devise a process for that as necessary.

Summary:
name string (must be unique within table)
Encapsulation Configuration:

encaps set of 1 or moreEncaps
Gateway Configuration:

vtep_logical_switches set of strings

Details:
name: string (must be unique within table)

A chassis name, taken fromexternal_ids:system-id in the Open_vSwitch database’s
Open_vSwitchtable. OVN does not prescribe a particular format for chassis names.

Encapsulation Configuration:
OVN uses encapsulation to transmit logical dataplane packets between chassis.

encaps: set of 1 or moreEncaps
Points to supported encapsulation configurations to transmit logical dataplane packets to this chas-
sis. Eachentry is aEncap record that describes the configuration.

Gateway Configuration:
A gatewayis a chassis that forwards traffic between the OVN-managed part of a logical network and a
physical VLAN, extending a tunnel-based logical network into a physical network. Gateways are typically
dedicated nodes that do not host VMs and will be controlled byovn−controller−vtep.

vtep_logical_switches: set of strings
Stores all VTEP logical switch names connected by this gateway chassis. ThePort_Binding table
entry withoptions:vtep−physical−switchequalChassis name, and options:vtep−logical−switch
value inChassis vtep_logical_switches, will be associated with thisChassis.

Open vSwitch 2.4.90 DB Schema 1.0.0 4

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Encap TABLE
Theencapscolumn in theChassistable refers to rows in this table to identify how OVN may transmit logi-
cal dataplane packets to this chassis. Each chassis, viaovn−controller(8) orovn−controller−vtep(8), adds
and updates its own rows and keeps a copy of the remaining rows to determine how to reach other chassis.

Summary:
type string, one ofstt, geneve, or vxlan
options map of string-string pairs
ip string

Details:
type: string, one ofstt, geneve, or vxlan

The encapsulation to use to transmit packets to this chassis. Hypervisors must use eithergeneve
or stt. Gateways may usevxlan, geneve, or stt.

options: map of string-string pairs
Options for configuring the encapsulation, e.g. IPsec parameters when IPsec support is introduced.
No options are currently defined.

ip: string
The IPv4 address of the encapsulation tunnel endpoint.

Open vSwitch 2.4.90 DB Schema 1.0.0 5

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Logical_Flow TABLE
Each row in this table represents one logical flow. ovn−northd populates this table with logical flows that
implement the L2 and L3 topologies specified in theOVN_Northbound database. Eachhypervisor, via
ovn−controller , translates the logical flows into OpenFlow flows specific to its hypervisor and installs them
into Open vSwitch.

Logical flows are expressed in an OVN-specific format, described here.A logical datapath flow is much
like an OpenFlow flow, except that the flows are written in terms of logical ports and logical datapaths
instead of physical ports and physical datapaths.Translation between logical and physical flows helps to
ensure isolation between logical datapaths.(The logical flow abstraction also allows the OVN centralized
components to do less work, since they do not have to separately compute and push out physical flows to
each chassis.)

The default action when no flow matches is to drop packets.

Architectural Logical Life Cycle of a Packet

This following description focuses on the life cycle of a packet through a logical datapath, ignoring physi-
cal details of the implementation. Please refer toAr chitectural Life Cycle of a Packet in ovn−architec-
ture(7) for the physical information.

The description here is written as if OVN itself executes these steps, but in fact OVN (that is,ovn−con-
troller) programs Open vSwitch, via OpenFlow and OVSDB, to execute them on its behalf.

At a high level, OVN passes each packet through the logical datapath’s logical ingress pipeline, which may
output the packet to one or more logical port or logical multicast groups.For each such logical output port,
OVN passes the packet through the datapath’s logical egress pipeline, which may either drop the packet or
deliver it to the destination. Between the two pipelines, outputs to logical multicast groups are expanded
into logical ports, so that the egress pipeline only processes a single logical output port at a time.Between
the two pipelines is also where, when necessary, OVN encapsulates a packet in a tunnel (or tunnels) to
transmit to remote hypervisors.

In more detail, to start, OVN searches theLogical_Flow table for a row with correctlogical_datapath, a
pipeline of ingress, a table_id of 0, and amatch that is true for the packet. If none is found, OVN drops
the packet. If OVN finds more than one, it chooses the match with the highestpriority . Then OVN exe-
cutes each of the actions specified in the row’s actionscolumn, in the order specified.Some actions, such
as those to modify packet headers, require no further details. Thenext andoutput actions are special.

Thenext action causes the above process to be repeated recursively, except that OVN searches fortable_id
of 1 instead of 0.Similarly, any next action in a row found in that table would cause a further search for a
table_id of 2, and so on.When recursive processing completes, flow control returns to the action following
next.

The output action also introduces recursion. Its effect depends on the current value of theoutport field.
Supposeoutport designates a logical port. First, OVN comparesinport to outport ; if they are equal, it
treats theoutput as a no-op.In the common case, where they are different, the packet enters the egress
pipeline. Thistransition to the egress pipeline discards register data, e.g.reg0 ... reg5, to achieve uniform
behavior regardless of whether the egress pipeline is on a different hypervisor (because registers aren’t pre-
serve across tunnel encapsulation).

To execute the egress pipeline, OVN again searches theLogical_Flow table for a row with correctlogi-
cal_datapath, a table_id of 0, amatch that is true for the packet, but now looking for apipeline of egress.
If no matching row is found, the output becomes a no-op. Otherwise, OVN executes the actions for the
matching flow (which is chosen from multiple, if necessary, as already described).

In the egresspipeline, thenext action acts as already described, except that it, of course, searches for
egressflows. Theoutput action, however, now directly outputs the packet to the output port (which is now
fixed, becauseoutport is read-only within the egress pipeline).

The description earlier assumed thatoutport referred to a logical port. If it instead designates a logical
multicast group, then the description above still applies, with the addition of fan-out from the logical multi-
cast group to each logical port in the group.For each member of the group, OVN executes the logical

Open vSwitch 2.4.90 DB Schema 1.0.0 6

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

pipeline as described, with the logical output port replaced by the group member.

Pipeline Stages

ovn−northd is responsible for populating theLogical_Flow table, so the stages are an implementation
detail and subject to change. This section describes the current logical flow table.

The ingress pipeline consists of the following stages:

• Port Security (Table 0): Validates the source address, drops packets with a VLAN tag,
and, if configured, verifies that the logical port is allowed to send with the source address.

• L2 Destination Lookup (Table 1): Forwards known unicast addresses to the appropriate
logical port. Unicast packets to unknown hosts are forwarded to logical ports configured
with the specialunknown mac address.Broadcast, and multicast are flooded to all ports
in the logical switch.

The egress pipeline consists of the following stages:

• ACL (Table 0): Applies any specified access control lists.

• Port Security (Table 1): If configured, verifies that the logical port is allowed to receive
packets with the destination address.

Summary:
logical_datapath Datapath_Binding
pipeline string, eitheringressor egress
table_id integer, in range 0 to 15
priority integer, in range 0 to 65,535
match string
actions string
external_ids : stage-name optional string
Common Columns:

external_ids map of string-string pairs

Details:
logical_datapath: Datapath_Binding

The logical datapath to which the logical flow belongs.

pipeline: string, eitheringressor egress
The primary flows used for deciding on a packet’s destination are theingressflows. Theegress
flows implement ACLs. SeeLogical Life Cycle of a Packet, above, for details.

table_id: integer, in range 0 to 15
The stage in the logical pipeline, analogous to an OpenFlow table number.

priority : integer, in range 0 to 65,535
The flow’s priority. Flows with numerically higher priority take precedence over those with lower.
If two logical datapath flows with the same priority both match, then the one actually applied to
the packet is undefined.

match: string
A matching expression. OVN provides a superset of OpenFlow matching capabilities, using a
syntax similar to Boolean expressions in a programming language.

The most important components of match expression arecomparisonsbetweensymbolsandcon-
stants, e.g. ip4.dst == 192.168.0.1, ip.proto == 6, arp.op == 1, eth.type == 0x800. The logical
AND operator&& and logical OR operator|| can combine comparisons into a larger expression.

Matching expressions also support parentheses for grouping, the logical NOT prefix operator!,
and literals0 and1 to express ‘‘false’’ or ‘ ‘true,’’ r espectively. The latter is useful by itself as a
catch-all expression that matches every packet.

Symbols

Open vSwitch 2.4.90 DB Schema 1.0.0 7

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Type. Symbols have integer or string type. Integer symbols have awidth in bits.

Kinds. There are three kinds of symbols:

• Fields. A field symbol represents a packet header or metadata field.For example, a field
namedvlan.tci might represent the VLAN TCI field in a packet.

A field symbol can have integer or string type.Integer fields can be nominal or ordinal
(seeLevel of M easurement, below).

• Subfields. A subfield represents a subset of bits from a larger field.For example, a field
vlan.vid might be defined as an alias forvlan.tci[0..11]. Subfields are provided for syn-
tactic convenience, because it is always possible to instead refer to a subset of bits from a
field directly.

Only ordinal fields (seeLevel of M easurement, below) may have subfields. Subfields
are always ordinal.

• Predicates. A predicate is shorthand for a Boolean expression. Predicatesmay be used
much like 1-bit fields. For example,ip4 might expand toeth.type == 0x800. Predicates
are provided for syntactic convenience, because it is always possible to instead specify
the underlying expression directly.

A predicate whose expansion refers to any nominal field or predicate (seeLevel of M ea-
surement, below) is nominal; other predicates have Boolean level of measurement.

Level of M easurement. See http://en.wikipedia.org/wiki/Level_of_measurement for the statisti-
cal concept on which this classification is based. There are three levels:

• Ordinal. In statistics, ordinal values can be ordered on a scale.OVN considers a field (or
subfield) to be ordinal if its bits can be examined individually. This is true for the Open-
Flow fields that OpenFlow or Open vSwitch makes ‘‘maskable.’’

Any use of a nominal field may specify a single bit or a range of bits, e.g.vlan.tci[13..15]
refers to the PCP field within the VLAN TCI, andeth.dst[40] refers to the multicast bit in
the Ethernet destination address.

OVN supports all the usual arithmetic relations (==, !=, <, <=, >, and >=) on ordinal
fields and their subfields, because OVN can implement these in OpenFlow and Open
vSwitch as collections of bitwise tests.

• Nominal. In statistics, nominal values cannot be usefully compared except for equality.
This is true of OpenFlow port numbers, Ethernet types, and IP protocols are examples: all
of these are just identifiers assigned arbitrarily with no deeper meaning.In OpenFlow
and Open vSwitch, bits in these fields generally aren’t individually addressable.

OVN only supports arithmetic tests for equality on nominal fields, because OpenFlow
and Open vSwitch provide no way for a flow to efficiently implement other comparisons
on them. (A test for inequality can be sort of built out of two flows with different priori-
ties, but OVN matching expressions always generate flows with a single priority.)

String fields are always nominal.

• Boolean. A nominal field that has only two values, 0 and 1, is somewhat exceptional,
since it is easy to support both equality and inequality tests on such a field: either one can
be implemented as a test for 0 or 1.

Only predicates (see above) hav ea Boolean level of measurement.

This isn’t a standard level of measurement.

Prerequisites. Any symbol can have prerequisites, which are additional condition implied by the
use of the symbol.For example, For example,icmp4.typesymbol might have prerequisiteicmp4,
which would cause an expressionicmp4.type == 0 to be interpreted asicmp4.type == 0 &&
icmp4, which would in turn expand toicmp4.type == 0 && eth.type == 0x800 && ip4.proto ==

Open vSwitch 2.4.90 DB Schema 1.0.0 8

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

1 (assumingicmp4 is a predicate defined as suggested underTypesabove).

Relational operators

All of the standard relational operators==, !=, <, <=, >, and >= are supported. Nominal fields
support only== and!=, and only in a positive sense when outer! are taken into account, e.g. given
string field inport , inport == "eth0" and !(inport != "eth0") are acceptable, but notinport !=
"eth0" .

The implementation of== (or != when it is negated), is more efficient than that of the other rela-
tional operators.

Constants

Integer constants may be expressed in decimal, hexadecimal prefixed by0x, or as dotted-quad
IPv4 addresses, IPv6 addresses in their standard forms, or Ethernet addresses as colon-separated
hex digits. A constant in any of these forms may be followed by a slash and a second constant (the
mask) in the same form, to form a masked constant. IPv4 and IPv6 masks may be given as inte-
gers, to express CIDR prefixes.

String constants have the same syntax as quoted strings in JSON (thus, they are Unicode strings).

Some operators support sets of constants written inside curly braces{ ... }. Commas between ele-
ments of a set, and after the last elements, are optional.With ==, ‘‘field == { constant1, constant2,
... }’’ i s syntactic sugar for ‘‘field == constant1|| field == constant2|| Similarly, ‘‘field != { con-
stant1, constant2, ... }’’ i s equivalent to ‘‘field != constant1&& field != constant2&& ...’’ .

Miscellaneous

Comparisons may name the symbol or the constant first, e.g.tcp.src == 80 and80 == tcp.src are
both acceptable.

Tests for a range may be expressed using a syntax like 1024 <= tcp.src <= 49151, which is equiv-
alent to1024 <= tcp.src && t cp.src <= 49151.

For a one-bit field or predicate, a mention of its name is equivalent to symobl == 1, e.g.
vlan.present is equivalent to vlan.present == 1. The same is true for one-bit subfields, e.g.
vlan.tci[12]. There is no technical limitation to implementing the same for ordinal fields of all
widths, but the implementation is expensive enough that the syntax parser requires writing an
explicit comparison against zero to make mistakes less likely, e.g. in tcp.src != 0 the comparison
against 0 is required.

Operator precedenceis as shown below, from highest to lowest. Thereare two exceptions where
parentheses are required even though the table would suggest that they are not:&& and|| require
parentheses when used together, and ! requires parentheses when applied to a relational expres-
sion. Thus,in (eth.type == 0x800 || eth.type == 0x86dd) && ip.proto == 6or !(arp.op == 1),
the parentheses are mandatory.

• ()

• == != < <= > >=

• !

• && ||

Commentsmay be introduced by//, which extends to the next new-line. Commentswithin a line
may be bracketed by/* and*/ . Multiline comments are not supported.

Symbols

Most of the symbols below hav einteger type. Only inport andoutport have string type. inport
names a logical port. Thus, its value is alogical_port name from thePort_Binding table. out-
port may name a logical port, asinport , or a logical multicast group defined in theMulti-
cast_Grouptable. For both symbols, only names within the flow’s logical datapath may be used.

Open vSwitch 2.4.90 DB Schema 1.0.0 9

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

• reg0...reg5

• inport outport

• eth.src eth.dst eth.type

• vlan.tci vlan.vid vlan.pcp vlan.present

• ip.proto ip.dscp ip.ecn ip.ttl ip.frag

• ip4.src ip4.dst

• ip6.src ip6.dst ip6.label

• arp.op arp.spa arp.tpa arp.sha arp.tha

• tcp.src tcp.dst tcp.flags

• udp.src udp.dst

• sctp.src sctp.dst

• icmp4.type icmp4.code

• icmp6.type icmp6.code

• nd.target nd.sll nd.tll

The following predicates are supported:

• eth.bcastexpands toeth.dst == ff:ff:ff:ff:ff:ff

• eth.mcastexpands toeth.dst[40]

• vlan.presentexpands tovlan.tci[12]

• ip4 expands toeth.type == 0x800

• ip4.mcastexpands toip4.dst[28..31] == 0xe

• ip6 expands toeth.type == 0x86dd

• ip expands toip4 || ip6

• icmp4 expands toip4 && ip.proto == 1

• icmp6 expands toip6 && ip.proto == 58

• icmp expands toicmp4 || icmp6

• ip.is_frag expands toip.frag[0]

• ip.later_frag expands toip.frag[1]

• ip.first_frag expands toip.is_frag && !ip.later_frag

• arp expands toeth.type == 0x806

• nd expands toicmp6.type == {135, 136} && icmp6.code == 0

• tcp expands toip.proto == 6

• udp expands toip.proto == 17

• sctpexpands toip.proto == 132

actions: string
Logical datapath actions, to be executed when the logical flow represented by this row is the high-
est-priority match.

Actions share lexical syntax with thematch column. Anempty set of actions (or one that contains
just white space or comments), or a set of actions that consists of justdrop; , causes the matched
packets to be dropped.Otherwise, the column should contain a sequence of actions, each termi-
nated by a semicolon.

Open vSwitch 2.4.90 DB Schema 1.0.0 10

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

The following actions are defined:

output;
In the ingress pipeline, this action executes theegresspipeline as a subroutine.If out-
port names a logical port, the egress pipeline executes once; if it is a multicast group, the
egress pipeline runs once for each logical port in the group.

In the egress pipeline, this action performs the actual output to theoutport logical port.
(In the egress pipeline,outport never names a multicast group.)

Output to the input port is implicitly dropped, that is,output becomes a no-op ifoutport
== inport .

next;
next(table);

Executes another logical datapath table as a subroutine. By default, the table after the
current one is executed. Specifytableto jump to a specific table in the same pipeline.

field= constant;
Sets data or metadata fieldfield to constant valueconstant, e.g. outport = "vif0"; to set
the logical output port.To set only a subset of bits in a field, specify a subfield forfield or
a maskedconstant, e.g. one may usevlan.pcp[2] = 1; or vlan.pcp = 4/4; to set the most
sigificant bit of the VLAN PCP.

Assigning to a field with prerequisites implicitly adds those prerequisites tomatch; thus,
for example, a flow that setstcp.dst applies only to TCP flows, regardless of whether its
match mentions any TCP field.

Not all fields are modifiable (e.g.eth.type andip.proto are read-only), and not all modi-
fiable fields may be partially modified (e.g.ip.ttl must assigned as a whole).Theoutport
field is modifiable in theingresspipeline but not in theegresspipeline.

field1= field2;
Sets data or metadata fieldfield1 to the value of data or metadata fieldfield2, e.g. reg0 =
ip4.src; copiesip4.src into reg0. To modify only a subset of a field’s bits, specify a sub-
field for field1 or field2 or both, e.g.vlan.pcp = reg0[0..2]; copies the least-significant
bits of reg0 into the VLAN PCP.

field1 andfield2 must be the same type, either both string or both integer fields. If they
are both integer fields, they must have the same width.

If field1 or field2 has prerequisites, they are added implicitly tomatch. It is possible to
write an assignment with contradictory prerequisites, such asip4.src = ip6.src[0..31];,
but the contradiction means that a logical flow with such an assignment will never be
matched.

field1<−> field2;
Similar to field1 = field2; except that the two values are exchanged instead of copied.
Bothfield1andfield2must modifiable.

The following actions will likely be useful later, but they hav enot been thought out carefully.

ip.ttl−−;
Decrements the IPv4 or IPv6 TTL. If this would make the TTL zero or negative, then
processing of the packet halts; no further actions are processed.(To properly handle such
cases, a higher-priority flow should match onip.ttl < 2.)

Prerequisite: ip

arp { action; ... };
Temporarily replaces the IPv4 packet being processed by an ARP packet and executes
each nestedactionon the ARP packet. Actionsfollowing thearp action, if any, apply to
the original, unmodified packet.

Open vSwitch 2.4.90 DB Schema 1.0.0 11

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

The ARP packet that this action operates on is initialized based on the IPv4 packet being
processed, as follows. Theseare default values that the nested actions will probably want
to change:

• eth.srcunchanged

• eth.dstunchanged

• eth.type = 0x0806

• arp.op = 1(ARP request)

• arp.shacopied frometh.src

• arp.spacopied fromip4.src

• arp.tha = 00:00:00:00:00:00

• arp.tpa copied fromip4.dst

Prerequisite: ip4

icmp4 { action; ... };
Temporarily replaces the IPv4 packet being processed by an ICMPv4 packet and executes
each nestedaction on the ICMPv4 packet. Actionsfollowing the icmp4 action, if any,
apply to the original, unmodified packet.

The ICMPv4 packet that this action operates on is initialized based on the IPv4 packet
being processed, as follows. Theseare default values that the nested actions will proba-
bly want to change. Ethernet and IPv4 fields not listed here are not changed:

• ip.proto = 1 (ICMPv4)

• ip.frag = 0 (not a fragment)

• icmp4.type = 3(destination unreachable)

• icmp4.code = 1(host unreachable)

XXX need to explain exactly how the ICMP packet is constructed

Prerequisite: ip4

tcp_reset;
This action transforms the current TCP packet according to the following pseudocode:

if (tcp.ack) {
tcp.seq = tcp.ack;

} else {
tcp.ack = tcp.seq + length(tcp.payload);
tcp.seq = 0;

}
tcp.flags = RST;

Then, the action drops all TCP options and payload data, and updates the TCP checksum.

Prerequisite: tcp

external_ids : stage-name: optional string
Human-readable name for this flow’s stage in the pipeline.

Common Columns:
The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.4.90 DB Schema 1.0.0 12

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Multicast_Group TABLE
The rows in this table define multicast groups of logical ports. Multicast groups allow a single packet trans-
mitted over a tunnel to a hypervisor to be delivered to multiple VMs on that hypervisor, which uses band-
width more efficiently.

Each row in this table defines a logical multicast group numberedtunnel_key within datapath, whose log-
ical ports are listed in theports column.

Summary:
datapath Datapath_Binding
tunnel_key integer, in range 32,768 to 65,535
name string
ports set of 1 or more weak reference toPort_Binding s

Details:
datapath: Datapath_Binding

The logical datapath in which the multicast group resides.

tunnel_key: integer, in range 32,768 to 65,535
The value used to designate this logical egress port in tunnel encapsulations. An index forces the
key to be unique within thedatapath. The unusual range ensures that multicast group IDs do not
overlap with logical port IDs.

name: string
The logical multicast group’s name. Anindex forces the name to be unique within thedatapath.
Logical flows in the ingress pipeline may output to the group just as for individual logical ports, by
assigning the group’s name tooutport and executing anoutput action.

Multicast group names and logical port names share a single namespace and thus should not over-
lap (but the database schema cannot enforce this).To try to avoid conflicts,ovn−northd uses
names that begin with_MC_.

ports: set of 1 or more weak reference toPort_Binding s
The logical ports included in the multicast group.All of these ports must be in thedatapath logi-
cal datapath (but the database schema cannot enforce this).

Open vSwitch 2.4.90 DB Schema 1.0.0 13

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Datapath_Binding TABLE
Each row in this table identifies physical bindings of a logical datapath.A logical datapath implements a
logical pipeline among the ports in thePort_Binding table associated with it.In practice, the pipeline in a
given logical datapath implements either a logical switch or a logical router.

Summary:
tunnel_key integer, in range 1 to 16,777,215 (must be unique

within table)
OVN_Northbound Relationship:

external_ids : logical-switch optional string, containing an uuid
external_ids : logical-router optional string, containing an uuid

Common Columns:
external_ids map of string-string pairs

Details:
tunnel_key: integer, in range 1 to 16,777,215 (must be unique within table)

The tunnel key value to which the logical datapath is bound.TheTunnel Encapsulationsection
in ovn−architecture(7) describes how tunnel keys are constructed for each supported encapsula-
tion.

OVN_Northbound Relationship:
Each row in Datapath_Binding is associated with some logical datapath.ovn−northd uses these key to
track the association of a logical datapath with concepts in theOVN_Northbound database.

external_ids : logical-switch: optional string, containing an uuid
For a logical datapath that represents a logical switch,ovn−northd stores in this key the UUID of
the correspondingLogical_Switch row in theOVN_Northbound database.

external_ids : logical-router: optional string, containing an uuid
For a logical datapath that represents a logical router, ovn−northd stores in this key the UUID of
the correspondingLogical_Router row in theOVN_Northbound database.

Common Columns:
The overall purpose of these columns is described underCommon Columnsat the beginning of this docu-
ment.

external_ids: map of string-string pairs

Open vSwitch 2.4.90 DB Schema 1.0.0 14

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Port_Binding TABLE
Most rows in this table identify the physical location of a logical port. (The exceptions are logical patch
ports, which do not have any physical location.)

For every Logical_Port record inOVN_Northbound database,ovn−northd creates a record in this table.
ovn−northd populates and maintains every column except thechassiscolumn, which it leaves empty in
new records.

ovn−controller /ovn−controller−vtep populates thechassiscolumn for the records that identify the logical
ports that are located on its hypervisor/gateway, which ovn−controller /ovn−controller−vtep in turn finds
out by monitoring the local hypervisor’s Open_vSwitch database, which identifies logical ports via the con-
ventions described inIntegrationGuide.md.

When a chassis shuts down gracefully, it should clean up thechassiscolumn that it previously had popu-
lated. (Thisis not critical because resources hosted on the chassis are equally unreachable regardless of
whether their rows are present.)To handle the case where a VM is shut down abruptly on one chassis, then
brought up again on a different one,ovn−controller /ovn−controller−vtep must overwrite thechassiscol-
umn with new information.

Summary:
Core Features:

datapath Datapath_Binding
logical_port string (must be unique within table)
chassis optional weak reference toChassis
tunnel_key integer, in range 1 to 32,767
mac set of strings
type string

Patch Options:
options : peer optional string

Localnet Options:
options : network_name optional string
tag optional integer, in range 1 to 4,095

VTEP Options:
options : vtep-physical-switch optional string
options : vtep-logical-switch optional string

Nested Containers:
parent_port optional string
tag optional integer, in range 1 to 4,095

Details:
Core Features:

datapath: Datapath_Binding
The logical datapath to which the logical port belongs.

logical_port: string (must be unique within table)
A logical port, taken fromname in the OVN_Northbound database’s Logical_Port table. OVN
does not prescribe a particular format for the logical port ID.

chassis: optional weak reference toChassis
The physical location of the logical port.To successfully identify a chassis, this column must be a
Chassisrecord. Thisis populated byovn−controller /ovn−controller−vtep.

tunnel_key: integer, in range 1 to 32,767
A number that represents the logical port in the key (e.g. STT key or Geneve TLV) field carried
within tunnel protocol packets.

The tunnel ID must be unique within the scope of a logical datapath.

Open vSwitch 2.4.90 DB Schema 1.0.0 15

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

mac: set of strings
The Ethernet address or addresses used as a source address on the logical port, each in the form
xx:xx:xx:xx:xx:xx. The stringunknown is also allowed to indicate that the logical port has an
unknown set of (additional) source addresses.

A VM i nterface would ordinarily have a single Ethernet address.A gateway port might initially
only haveunknown, and then add MAC addresses to the set as it learns new source addresses.

type: string
A type for this logical port.Logical ports can be used to model other types of connectivity into an
OVN logical switch. The following types are defined:

(empty string)
VM (or VIF) interface.

patch One of a pair of logical ports that act as if connected by a patch cable. Useful for con-
necting two logical datapaths, e.g. to connect a logical router to a logical switch or to
another logical router.

localnet
A connection to a locally accessible network from eachovn−controller instance. Alogi-
cal switch can only have a single localnet port attached and at most one regular logical
port. Thisis used to model direct connectivity to an existing network.

vtep A port to a logical switch on a VTEP gateway chassis. Inorder to get this port correctly
recognized by the OVN controller, the options:vtep−physical−switch and
options:vtep−logical−switchmust also be defined.

Patch Options:
These options apply to logical ports withtype of patch.

options : peer: optional string
The logical_port in the Port_Binding record for the other side of the patch. The namedlogi-
cal_port must specify thislogical_port in its own peer option. Thatis, the two patch logical
ports must have rev ersedlogical_port andpeervalues.

Localnet Options:
These options apply to logical ports withtype of localnet.

options : network_name: optional string
Required.ovn−controller uses the configuration entryovn−bridge−mappings to determine how
to connect to this network. ovn−bridge−mappings is a list of network names mapped to a local
OVS bridge that provides access to that network. An example of configuringovn−bridge−map-
pingswould be:

$ ovs−vsctl set open . external−ids:ovn−bridge−mappings=physnet1:br−eth0,physnet2:br−eth1

When a logical switch has alocalnet port attached, every chassis that may have a local vif
attached to that logical switch must have a bridge mapping configured to reach thatlocalnet. Traf-
fic that arrives on alocalnetport is never forwarded over a tunnel to another chassis.

tag: optional integer, in range 1 to 4,095
If set, indicates that the port represents a connection to a specific VLAN on a locally accessible
network. The VLAN ID is used to match incoming traffic and is also added to outgoing traffic.

VTEP Options:
These options apply to logical ports withtype of vtep.

options : vtep-physical-switch: optional string
Required. The name of the VTEP gateway.

options : vtep-logical-switch: optional string
Required. Alogical switch name connected by the VTEP gateway. Must be set whentype is
vtep.

Open vSwitch 2.4.90 DB Schema 1.0.0 16

ovn-sb(5) OpenvSwitch Manual ovn-sb(5)

Nested Containers:
These columns support containers nested within a VM.Specifically, they are used whentype is empty and
logical_port identifies the interface of a container spawned inside a VM.They are empty for containers or
VMs that run directly on a hypervisor.

parent_port: optional string
This is taken fromparent_namein the OVN_Northbound database’sLogical_Port table.

tag: optional integer, in range 1 to 4,095
Identifies the VLAN tag in the network traffic associated with that container’s network interface.

This column is used for a different purpose whentype is localnet (seeLocalnet Options, above).

Open vSwitch 2.4.90 DB Schema 1.0.0 17

