
ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

NAME
ovs−ofctl − administer OpenFlow switches

SYNOPSIS
ovs−ofctl [options] command[switch] [args...]

DESCRIPTION
The ovs−ofctl program is a command line tool for monitoring and administering OpenFlow switches. It
can also show the current state of an OpenFlow switch, including features, configuration, and table entries.
It should work with any OpenFlow switch, not just Open vSwitch.

OpenFlow Switch Management Commands
These commands allow ovs−ofctl to monitor and administer an OpenFlow switch. It is able to show the
current state of a switch, including features, configuration, and table entries.

Most of these commands take an argument that specifies the method for connecting to an OpenFlow switch.
The following connection methods are supported:

ssl:ip[:port]
tcp:ip[:port]

The specifiedport on the host at the given ip, which must be expressed as an IP address
(not a DNS name) in IPv4 or IPv6 address format. Wrap IPv6 addresses in square brack-
ets, e.g.tcp:[::1]:6653. For ssl, the −−pri vate−key, −−certificate, and −−ca−cert
options are mandatory.

If port is not specified, it defaults to 6653.

unix:file
On POSIX, a Unix domain server socket namedfile.

On Windows, a localhost TCP port written infile.

file This is short forunix:file, as long asfile does not contain a colon.

bridge This is short forunix:/var/run/openvswitch/bridge.mgmt, as long asbridge does not
contain a colon.

[type@]dp
Attempts to look up the bridge associated withdp and open as above. If type is given, it
specifies the datapath provider ofdp, otherwise the default providersystemis assumed.

showswitch
Prints to the console information onswitch, including information on its flow tables and ports.

dump−tablesswitch
Prints to the console statistics for each of the flow tables used byswitch.

dump−table−featuresswitch
Prints to the console features for each of the flow tables used byswitch.

dump−table−descswitch
Prints to the console configuration for each of the flow tables used byswitchfor OpenFlow 1.4+.

mod−tableswitch table_id setting
This command configures flow table settings for OpenFlow table table_id within switch. The
available settings depend on the OpenFlow version in use. In OpenFlow 1.1 and 1.2 (which must
be enabled with the−O option) only, mod−table configures behavior when no flow is found when
a packet is looked up in a flow table. Thefollowing settingvalues are available:

drop Drop the packet.

continue
Continue to the next table in the pipeline. (This is how an OpenFlow 1.0 switch always
handles packets that do not match any flow, in tables other than the last one.)

Open vSwitch 2.4.90 1

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

controller
Send to controller. (This is how an OpenFlow 1.0 switch always handles packets that do
not match any flow in the last table.)

In OpenFlow 1.4 and later (which must be enabled with the−O option) only, mod−table config-
ures the behavior when a controller attempts to add a flow to a flow table that is full.The follow-
ing settingvalues are available:

evict Delete some existing flow from the flow table, according to the algorithm described for
theFlow_Table table inovs-vswitchd.conf.db(5).

noevict Refuse to add the new flow. (Eviction might still be enabled through theoverflow_policy
oclumn in theFlow_Table table documented inovs-vswitchd.conf.db(5).)

dump−ports switch[netdev]
Prints to the console statistics for network devices associated withswitch. If netdevis specified,
only the statistics associated with that device will be printed.netdevcan be an OpenFlow assigned
port number or device name, e.g.eth0.

dump−ports−descswitch[port]
Prints to the console detailed information about network devices associated withswitch. To dump
only a specific port, specify its number asport. Otherwise, ifport is omitted, or if it is specified as
ANY , then all ports are printed. This is a subset of the information provided by theshow com-
mand.

If the connection toswitchnegotiates OpenFlow 1.0, 1.2, or 1.2, this command uses an OpenFlow
extension only implemented in Open vSwitch (version 1.7 and later).

Only OpenFlow 1.5 and later support dumping a specific port. Earlier versions of OpenFlow
always dump all ports.

mod−port switch port action
Modify characteristics of portport in switch. port may be an OpenFlow port number or name or
the keyword LOCAL (the preferred way to refer to the OpenFlow local port). Theactionmay be
any one of the following:
up
down Enable or disable the interface. Thisis equivalent to ifconfig up or ifconfig down on a

Unix system.

stp
no−stp Enable or disable 802.1D spanning tree protocol (STP) on the interface. OpenFlow

implementations that don’t support STP will refuse to enable it.

receive
no−receive
receive−stp
no−receive−stp

Enable or disable OpenFlow processing of packets received on this interface. When
packet processing is disabled, packets will be dropped instead of being processed through
the OpenFlow table. Thereceive or no−receive setting applies to all packets except
802.1D spanning tree packets, which are separately controlled byreceive−stp or
no−receive−stp.

forward
no−forward

Allow or disallow forwarding of traffic to this interface. By default, forwarding is
enabled.

flood
no−flood

Controls whether an OpenFlow flood action will send traffic out this interface. By
default, flooding is enabled. Disabling flooding is primarily useful to prevent loops when

Open vSwitch 2.4.90 2

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

a spanning tree protocol is not in use.

packet−in
no−packet−in

Controls whether packets received on this interface that do not match a flow table entry
generate a ‘‘packet in’’ message to the OpenFlow controller. By default, ‘‘packet in’’
messages are enabled.

The show command displays (among other information) the configuration thatmod−port
changes.

get−fragsswitch
Printsswitch’s fragment handling mode.Seeset−frags, below, for a description of each fragment
handling mode.

Theshowcommand also prints the fragment handling mode among its other output.

set−fragsswitch fra g_mode
Configuresswitch’s treatment of IPv4 and IPv6 fragments. The choices forfrag_modeare:

normal
Fragments pass through the flow table like non-fragmented packets. TheTCP ports, UDP
ports, and ICMP type and code fields are always set to 0, even for fragments where that
information would otherwise be available (fragments with offset 0).This is the default
fragment handling mode for an OpenFlow switch.

drop Fragments are dropped without passing through the flow table.

reassemble
The switch reassembles fragments into full IP packets before passing them through the
flow table. OpenvSwitch does not implement this fragment handling mode.

nx−match
Fragments pass through the flow table like non-fragmented packets. TheTCP ports, UDP
ports, and ICMP type and code fields are available for matching for fragments with offset
0, and set to 0 in fragments with nonzero offset. Thismode is a Nicira extension.

See the description ofip_frag, below, for a way to match on whether a packet is a fragment and on
its fragment offset.

dump−flowsswitch[flows]
Prints to the console all flow entries inswitch’s tables that matchflows. If flows is omitted, all
flows in the switch are retrieved. SeeFlow Syntax, below, for the syntax offlows. The output for-
mat is described inTable Entry Output .

By default, ovs−ofctl prints flow entries in the same order that the switch sends them, which is
unlikely to be intuitive or consistent. Seethe description of−−sort and−−rsort, underOPTIONS
below, to influence the display order.

dump−aggregateswitch[flows]
Prints to the console aggregate statistics for flows inswitch’s tables that matchflows. If flows is
omitted, the statistics are aggregated across all flows in the switch’s flow tables. SeeFlow Syntax,
below, for the syntax offlows. The output format is described inTable Entry Output .

queue−statsswitch[port [queue]]
Prints to the console statistics for the specifiedqueueon port within switch. port can be an Open-
Flow port number or name, the keyword LOCAL (the preferred way to refer to the OpenFlow
local port), or the keyword ALL . Either of port or queueor both may be omitted (or equivalently
the keyword ALL). If both are omitted, statistics are printed for all queues on all ports. If only
queueis omitted, then statistics are printed for all queues onport; if only port is omitted, then sta-
tistics are printed forqueueon every port where it exists.

Open vSwitch 2.4.90 3

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

OpenFlow 1.1+ Group Table Commands
The following commands work only with switches that support OpenFlow 1.1 or later. Because support for
OpenFlow 1.1 and later is still experimental in Open vSwitch, it is necessary to explicitly enable these pro-
tocol versions inovs−ofctl (using−O) and in the switch itself (with theprotocols column in theBridge ta-
ble). For more information, see ‘‘Q: What versions of OpenFlow does Open vSwitch support?’’ in the
Open vSwitch FAQ.

dump−groupsswitch[group]
Prints group entries inswitch’s tables to console.To dump only a specific group, specify its num-
ber asgroup. Otherwise, ifgroup is omitted, or if it is specified asALL , then all groups are
printed. Eachline of output is a group entry as described inGroup Syntax below.

Only OpenFlow 1.5 and later support dumping a specific group. Earlier versions of OpenFlow
always dump all groups.

dump−group−featuresswitch
Prints to the console the group features of theswitch.

dump−group-statsswitch[groups]
Prints to the console statistics for the specifiedgroups in the switch’s tables. Ifgroupsis omitted
then statistics for all groups are printed. SeeGroup Syntax, below, for the syntax ofgroups.

OpenFlow 1.3+ Switch Meter Table Commands
These commands manage the meter table in an OpenFlow switch. In each case,meterspecifies a meter
entry in the format described inMeter Syntax, below.

OpenFlow 1.3 introduced support for meters, so these commands only work with switches that support
OpenFlow 1.3 or later. The caveats described for groups in the previous section also apply to meters.

add−meterswitch meter
Add a meter entry toswitch’s tables. Themetersyntax is described in sectionMeter Syntax,
below.

mod−meterswitch meter
Modify an existing meter.

del−metersswitch
del−meterswitch[meter]

Delete entries fromswitch’s meter table.metercan specify a single meter with syntaxmeter=id,
or all meters with syntaxmeter=all.

dump−metersswitch
dump−meter switch[meter]

Print meter configuration.metercan specify a single meter with syntaxmeter=id, or all meters
with syntaxmeter=all.

meter−statsswitch[meter]
Print meter statistics.metercan specify a single meter with syntaxmeter=id, or all meters with
syntaxmeter=all.

meter−featuresswitch
Print meter features.

OpenFlow Switch Flow Table Commands
These commands manage the flow table in an OpenFlow switch. In each case,flow specifies a flow entry in
the format described inFlow Syntax, below, file is a text file that contains zero or more flows in the same
syntax, one per line, and the optional−−bundle option operates the command as a single atomic transation,
see option−−bundle, below.

[−−bundle] add−flow switch flow
[−−bundle] add−flow switch− < file

Open vSwitch 2.4.90 4

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

[−−bundle] add−flowsswitch file
Add each flow entry to switch’s tables. Eachflow specification (e.g., each line infile) may start
with add, modify, delete, modify_strict , or delete_strictkeyword to specify whether a flow is to
be added, modified, or deleted, and whether the modify or delete is strict or not.For backwards
compatibility a flow specification without one of these keywords is treated as a flow add. All flow
mods are executed in the order specified.

[−−bundle] [−−strict] mod−flowsswitch flow
[−−bundle] [−−strict] mod−flowsswitch− < file

Modify the actions in entries fromswitch’s tables that match the specified flows. With −−strict,
wildcards are not treated as active for matching purposes.

[−−bundle] del−flowsswitch
[−−bundle] [−−strict] del−flowsswitch[flow]
[−−bundle] [−−strict] del−flowsswitch− < file

Deletes entries fromswitch’s flow table. With only aswitchargument, deletes all flows. Other-
wise, deletes flow entries that match the specified flows. With −−strict, wildcards are not treated
as active for matching purposes.

[−−bundle] [−−readd] replace−flowsswitch file
Reads flow entries fromfile (or stdin if file is −) and queries the flow table fromswitch. Then it
fixes up any differences, adding flows fromflow that are missing onswitch, deleting flows from
switchthat are not infile, and updating flows inswitchwhose actions, cookie, or timeouts differ in
file.

With −−readd, ovs−ofctl adds all the flows fromfile, even those that exist with the same actions,
cookie, and timeout inswitch. This resets all the flow packet and byte counters to 0, which can be
useful for debugging.

diff−flows source1 source2
Reads flow entries fromsource1andsource2and prints the differences. Aflow that is insource1
but not in source2is printed preceded by a−, and a flow that is insource2but not in source1is
printed preceded by a+. If a flow exists in bothsource1and source2with different actions,
cookie, or timeouts, then both versions are printed preceded by− and+, respectively.

source1andsource2may each name a file or a switch. If a name begins with/ or ., then it is con-
sidered to be a file name.A name that contains: is considered to be a switch. Otherwise, it is a
file if a file by that name exists, a switch if not.

For this command, an exit status of 0 means that no differences were found, 1 means that an error
occurred, and 2 means that some differences were found.

packet−outswitch in_port actions packet...
Connects toswitchand instructs it to execute the OpenFlow actionson eachpacket. Eachpacket
is specified as a series of hex digits. For the purpose of executing the actions, the packets are con-
sidered to have arrived on in_port, which may be an OpenFlow port number or name (e.g.eth0),
the keyword LOCAL (the preferred way to refer to the OpenFlow ‘‘local’’ port), or the keyword
NONE to indicate that the packet was generated by the switch itself.

OpenFlow Switch Group Table Commands
These commands manage the group table in an OpenFlow switch. In each case,group specifies a group
entry in the format described inGroup Syntax, below, and file is a text file that contains zero or more
groups in the same syntax, one per line.

add−group switch group
add−group switch− < file
add−groupsswitch file

Add each group entry toswitch’s tables.

Open vSwitch 2.4.90 5

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

mod−group switch group
mod−group switch− < file

Modify the action buckets in entries fromswitch’s tables for each group entry.

del−groupsswitch
del−groupsswitch[group]
del−groupsswitch− < file

Deletes entries fromswitch’s group table.With only aswitchargument, deletes all groups.Other-
wise, deletes the group for each group entry.

insert−bucketsswitch group
insert−bucketsswitch− < file

Add buckets to an existing group present in theswitch’s group table. If nocommand_bucket_id is
present in the group specification then all buckets of the group are removed.

remove−bucketsswitch group
remove−bucketsswitch− < file

Remove buckets to an existing group present in theswitch’s group table. If no com-
mand_bucket_id is present in the group specification then all buckets of the group are removed.

OpenFlow Switch Geneve Option Table Commands
Open vSwitch maintains a mapping table between Geneve options (defined by <class, type, length>) and an
NXM field tun_metadatan, wheren ranges from 0 to 63, that can be operated on for the purposes of
matches, actions, etc. This mapping must be explicitly specified by the user through the following com-
mands.

A Geneve option mapping is specified with the syntax{class=class,type=type,len=length}->tun_meta-
datan. When an option mapping exists for a given tun_metadatan, matching on the defined field becomes
possible, e.g.:

ovs-ofctl add-geneve-map br0 "{class=0xffff ,type=0,len=4}->tun_metadata0"

ovs-ofctl add-flow br0 tun_metadata0=1234,actions=controller

A mapping should not be changed while it is in active use by a flow. The result of doing so is undefined.

Currently, the Geneve mapping table is shared between all OpenFlow switches in a given instance of Open
vSwitch. This restriction will be lifted in the future to allow for easier management.

These commands are Nicira extensions to OpenFlow and require Open vSwitch 2.5 or later.

add−geneve−map switch option[,option]...
Add eachoptionto switch’s tables. Duplicate fields are rejected.

del−geneve−map switch[option[,option]]...
Delete eachoption from switch’s table, or all Geneve option mapping if nooption is specified.
Fields that aren’t mapped are ignored.

dump−geneve−map switch
Show the currently mapped fields in the switch’s option table as well as switch capabilities.

OpenFlow Switch Monitoring Commands
snoopswitch

Connects toswitch and prints to the console all OpenFlow messages received. Unlike other
ovs−ofctl commands, ifswitch is the name of a bridge, then thesnoopcommand connects to a
Unix domain socket named/var/run/openvswitch/switch.snoop. ovs−vswitchd listens on such a
socket for each bridge and sends to it all of the OpenFlow messages sent to or received from its
configured OpenFlow controller. Thus, this command can be used to view OpenFlow protocol
activity between a switch and its controller.

Open vSwitch 2.4.90 6

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

When a switch has more than one controller configured, only the traffic to and from a single con-
troller is output. If none of the controllers is configured as a master or a slave (using a Nicira
extension to OpenFlow 1.0 or 1.1, or a standard request in OpenFlow 1.2 or later), then a con-
troller is chosen arbitrarily among them.If there is a master controller, it is chosen; otherwise, if
there are any controllers that are not masters or slaves, one is chosen arbitrarily; otherwise, a slave
controller is chosen arbitrarily. This choice is made once at connection time and does not change
as controllers reconfigure their roles.

If a switch has no controller configured, or if the configured controller is disconnected, no traffic is
sent, so monitoring will not show any traffic.

monitor switch[miss-len] [invalid_ttl] [watch:[spec...]]
Connects toswitch and prints to the console all OpenFlow messages received. Usually, switch
should specify the name of a bridge in theovs−vswitchddatabase.

If miss-lenis provided,ovs−ofctl sends an OpenFlow ‘‘set configuration’’ message at connection
setup time that requestsmiss-lenbytes of each packet that misses the flow table. OpenvSwitch
does not send these and other asynchronous messages to anovs−ofctl monitor client connection
unless a nonzero value is specified on this argument. (Thus,if miss−lenis not specified, very little
traffic will ordinarily be printed.)

If invalid_ttl is passed,ovs−ofctl sends an OpenFlow ‘‘set configuration’’ message at connection
setup time that requestsINVALID_TTL_TO_CONTROLLER , so that ovs−ofctl monitor can
receive ‘‘packet-in’’ messages when TTL reaches zero ondec_ttl action.

watch:[spec...] causesovs−ofctl to send a ‘‘monitor request’’ N icira extension message to the
switch at connection setup time.This message causes the switch to send information about flow
table changes as they occur. The following comma-separatedspecsyntax is available:

!initial Do not report the switch’s initial flow table contents.

!add Do not report newly added flows.

!delete Do not report deleted flows.

!modify
Do not report modifications to existing flows.

!own Abbreviate changes made to the flow table byovs−ofctl’s own connection to the switch.
(These could only occur using theofctl/send command described below under RUN-
TIME MAN AGEMENT COMMANDS .)

!actions
Do not report actions as part of flow updates.

table=number
Limits the monitoring to the table with the given numberbetween 0 and 254. By default,
all tables are monitored.

out_port=port
If set, only flows that output toport are monitored.The port may be an OpenFlow port
number or keyword (e.g.LOCAL).

field=value
Monitors only flows that have field specified as the given value. Any syntax valid for
matching ondump−flowsmay be used.

This command may be useful for debugging switch or controller implementations.With watch:,
it is particularly useful for observing how a controller updates flow tables.

OpenFlow Switch and Controller Commands
The following commands, like those in the previous section, may be applied to OpenFlow switches, using
any of the connection methods described in that section.Unlike those commands, these may also be
applied to OpenFlow controllers.

Open vSwitch 2.4.90 7

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

probe target
Sends a single OpenFlow echo-request message totarget and waits for the response.With the−t
or −−timeout option, this command can test whether an OpenFlow switch or controller is up and
running.

ping target [n]
Sends a series of 10 echo request packets totarget and times each reply. The echo request packets
consist of an OpenFlow header plusn bytes (default: 64) of randomly generated payload.This
measures the latency of individual requests.

benchmark target n count
Sendscountecho request packets that each consist of an OpenFlow header plusn bytes of payload
and waits for each response. Reports the total time required. This is a measure of the maximum
bandwidth totarget for round-trips ofn-byte messages.

Other Commands
ofp−parsefile

Readsfile (or stdin if file is −) as a series of OpenFlow messages in the binary format used on an
OpenFlow connection, and prints them to the console.This can be useful for printing OpenFlow
messages captured from a TCP stream.

ofp−parse−pcapfile [port...]
Readsfile, which must be in the PCAP format used by network capture tools such astcpdump or
wireshark, extracts all the TCP streams for OpenFlow connections, and prints the OpenFlow mes-
sages in those connections in human-readable format onstdout.

OpenFlow connections are distinguished by TCP port number. Non-OpenFlow packets are
ignored. Bydefault, data on TCP ports 6633 and 6653 are considered to be OpenFlow. Specify
one or moreport arguments to override the default.

This command cannot usefully print SSL encrypted traffic. It does not understand IPv6.

Flow Syntax
Someovs−ofctl commands accept an argument that describes a flow or flows. Suchflow descriptions com-
prise a seriesfield=value assignments, separated by commas or white space. (Embedding spaces into a
flow description normally requires quoting to prevent the shell from breaking the description into multiple
arguments.)

Flow descriptions should be innormal form. This means that a flow may only specify a value for an L3
field if it also specifies a particular L2 protocol, and that a flow may only specify an L4 field if it also speci-
fies particular L2 and L3 protocol types.For example, if the L2 protocol typedl_type is wildcarded, then
L3 fieldsnw_src, nw_dst, and nw_proto must also be wildcarded.Similarly, if dl_type or nw_proto (the
L3 protocol type) is wildcarded, so must be the L4 fieldstcp_dst and tcp_src. ovs−ofctl will warn about
flows not in normal form.

The following field assignments describe how a flow matches a packet. If any of these assignments is omit-
ted from the flow syntax, the field is treated as a wildcard; thus, if all of them are omitted, the resulting flow
matches all packets. Thestring * may be specified to explicitly mark any of these fields as a wildcard.(*
should be quoted to protect it from shell expansion.)

in_port=port
Matches OpenFlow port port, which may be an OpenFlow port number or keyword (e.g.
LOCAL). ovs−ofctl show.

(Theresubmit action can search OpenFlow flow tables with arbitraryin_port values, so flows that
match port numbers that do not exist from an OpenFlow perspective can still potentially be
matched.)

dl_vlan=vlan
Matches IEEE 802.1q Virtual LAN tagvlan. Specify 0xffff asvlan to match packets that are not
tagged with a Virtual LAN; otherwise, specify a number between 0 and 4095, inclusive, as the
12-bit VLAN ID to match.

Open vSwitch 2.4.90 8

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

dl_vlan_pcp=priority
Matches IEEE 802.1q Priority Code Point (PCP)priority, which is specified as a value between 0
and 7, inclusive. A higher value indicates a higher frame priority level.

dl_src=xx:xx:xx:xx:xx:xx
dl_dst=xx:xx:xx:xx:xx:xx

Matches an Ethernet source (or destination) address specified as 6 pairs of hexadecimal digits
delimited by colons (e.g.00:0A:E4:25:6B:B0).

dl_src=xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx
dl_dst=xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx

Matches an Ethernet destination address specified as 6 pairs of hexadecimal digits delimited by
colons (e.g.00:0A:E4:25:6B:B0), with a wildcard mask following the slash. Open vSwitch 1.8
and later support arbitrary masks for source and/or destination. Earlier versions only support
masking the destination with the following masks:

01:00:00:00:00:00
Match only the multicast bit. Thus, dl_dst=01:00:00:00:00:00/01:00:00:00:00:00
matches all multicast (including broadcast) Ethernet packets, and
dl_dst=00:00:00:00:00:00/01:00:00:00:00:00matches all unicast Ethernet packets.

fe:ff:ff:ff:ff:ff
Match all bits except the multicast bit. This is probably not useful.

ff:ff:ff:ff:ff:ff
Exact match (equivalent to omitting the mask).

00:00:00:00:00:00
Wildcard all bits (equivalent todl_dst=*.)

dl_type=ethertype
Matches Ethernet protocol typeethertype, which is specified as an integer between 0 and 65535,
inclusive, either in decimal or as a hexadecimal number prefixed by0x (e.g.0x0806to match ARP
packets).

nw_src=ip[/netmask]
nw_dst=ip[/netmask]

Whendl_type is 0x0800 (possibly via shorthand, e.g.ip or tcp), matches IPv4 source (or destina-
tion) addressip, which may be specified as an IP address or host name (e.g.192.168.1.1or
www.example.com). Theoptionalnetmaskallows restricting a match to an IPv4 address prefix.
The netmask may be specified as a dotted quad (e.g.192.168.1.0/255.255.255.0) or as a CIDR
block (e.g.192.168.1.0/24). OpenvSwitch 1.8 and later support arbitrary dotted quad masks; ear-
lier versions support only CIDR masks, that is, the dotted quads that are equivalent to some CIDR
block.

When dl_type=0x0806or arp is specified, matches thear_spa or ar_tpa field, respectively, in
ARP packets for IPv4 and Ethernet.

Whendl_type=0x8035or rarp is specified, matches thear_spa or ar_tpa field, respectively, in
RARP packets for IPv4 and Ethernet.

Whendl_type is wildcarded or set to a value other than 0x0800, 0x0806, or 0x8035, the values of
nw_srcandnw_dstare ignored (seeFlow Syntax above).

nw_proto=proto
ip_proto=proto

When ip or dl_type=0x0800is specified, matches IP protocol typeproto, which is specified as a
decimal number between 0 and 255, inclusive (e.g. 1 to match ICMP packets or 6 to match TCP
packets).

Whenipv6 or dl_type=0x86ddis specified, matches IPv6 header typeproto, which is specified as
a decimal number between 0 and 255, inclusive (e.g. 58 to match ICMPv6 packets or 6 to match

Open vSwitch 2.4.90 9

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

TCP). Theheader type is the terminal header as described in theDESIGN document.

When arp or dl_type=0x0806is specified, matches the lower 8 bits of the ARP opcode.ARP
opcodes greater than 255 are treated as 0.

When rarp or dl_type=0x8035is specified, matches the lower 8 bits of the ARP opcode.ARP
opcodes greater than 255 are treated as 0.

Whendl_type is wildcarded or set to a value other than 0x0800, 0x0806, 0x8035 or 0x86dd, the
value ofnw_proto is ignored (seeFlow Syntax above).

nw_tos=tos
Matches IP ToS/DSCP or IPv6 traffic class fieldtos, which is specified as a decimal number
between 0 and 255, inclusive. Note that the two lower reserved bits are ignored for matching pur-
poses.

Whendl_type is wildcarded or set to a value other than 0x0800 or 0x86dd, the value ofnw_tos is
ignored (seeFlow Syntax above).

ip_dscp=dscp
Matches IP ToS/DSCP or IPv6 traffic class fielddscp, which is specified as a decimal number
between 0 and 63, inclusive.

Whendl_type is wildcarded or set to a value other than 0x0800 or 0x86dd, the value ofip_dscp is
ignored (seeFlow Syntax above).

nw_ecn=ecn
ip_ecn=ecn

Matchesecn bits in IP ToS or IPv6 traffic class fields, which is specified as a decimal number
between 0 and 3, inclusive.

Whendl_type is wildcarded or set to a value other than 0x0800 or 0x86dd, the value ofnw_ecnis
ignored (seeFlow Syntax above).

nw_ttl= ttl
Matches IP TTL or IPv6 hop limit valuettl, which is specified as a decimal number between 0 and
255, inclusive.

Whendl_type is wildcarded or set to a value other than 0x0800 or 0x86dd, the value ofnw_ttl is
ignored (seeFlow Syntax above).

tcp_src=port
tcp_dst=port
udp_src=port
udp_dst=port
sctp_src=port
sctp_dst=port

Matches a TCP, UDP, or SCTP source or destination portport, which is specified as a decimal
number between 0 and 65535, inclusive.

Whendl_type andnw_proto are wildcarded or set to values that do not indicate an appropriate
protocol, the values of these settings are ignored (seeFlow Syntax above).

tcp_src=port/mask
tcp_dst=port/mask
udp_src=port/mask
udp_dst=port/mask
sctp_src=port/mask
sctp_dst=port/mask

Bitwise match on TCP (or UDP or SCTP) source or destination port.Theport andmaskare 16-bit
numbers written in decimal or in hexadecimal prefixed by0x. Each 1-bit inmaskrequires that the
corresponding bit inport must match.Each 0-bit inmaskcauses the corresponding bit to be
ignored.

Open vSwitch 2.4.90 10

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

Bitwise matches on transport ports are rarely useful in isolation, but a group of them can be used
to reduce the number of flows required to match on a range of transport ports.For example, sup-
pose that the goal is to match TCP source ports 1000 to 1999, inclusive. One way is to insert 1000
flows, each of which matches on a single source port.Another way is to look at the binary repre-
sentations of 1000 and 1999, as follows:
01111101000
11111001111
and then to transform those into a series of bitwise matches that accomplish the same results:
01111101xxx
0111111xxxx
10xxxxxxxxx
110xxxxxxxx
1110xxxxxxx
11110xxxxxx
1111100xxxx
which become the following when written in the syntax required byovs−ofctl:
tcp,tcp_src=0x03e8/0xfff8
tcp,tcp_src=0x03f0/0xfff0
tcp,tcp_src=0x0400/0xfe00
tcp,tcp_src=0x0600/0xff00
tcp,tcp_src=0x0700/0xff80
tcp,tcp_src=0x0780/0xffc0
tcp,tcp_src=0x07c0/0xfff0

Only Open vSwitch 1.6 and later supports bitwise matching on transport ports.

Like the exact-match forms described above, the bitwise match forms apply only whendl_type
andnw_proto specify TCP or UDP or SCTP.

tp_src=port
tp_dst=port

These are deprecated generic forms of L4 port matches.In new code, please use the TCP-, UDP-,
or SCTP-specific forms described above.

tcp_flags=flags/mask
tcp_flags=[+flag...][-flag...]

Bitwise match on TCP flags.Theflagsandmaskare 16-bit numbers written in decimal or in hexa-
decimal prefixed by0x. Each 1-bit inmask requires that the corresponding bit inflags must
match. Each0-bit in maskcauses the corresponding bit to be ignored.

Alternatively, the flags can be specified by their symbolic names (listed below), each preceded by
either+ for a flag that must be set, or− for a flag that must be unset, without any other delimiters
between the flags. Flags not mentioned are wildcarded.For example,tcp,tcp_flags=+syn−ack
matches TCP SYNs that are not ACKs.

TCP protocol currently defines 9 flag bits, and additional 3 bits are reserved (must be transmitted
as zero), see RFCs 793, 3168, and 3540. The flag bits are, numbering from the least significant
bit:

0: fin No more data from sender.

1: syn Synchronize sequence numbers.

2: rst Reset the connection.

3: psh Push function.

4: ack Acknowledgement field significant.

5: urg Urgent pointer field significant.

Open vSwitch 2.4.90 11

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

6: ece ECN Echo.

7: cwr Congestion Windows Reduced.

8: ns Nonce Sum.

9-11: Reserved.

12-15: Not matchable, must be zero.

icmp_type=type
icmp_code=code

Whendl_type andnw_proto specify ICMP or ICMPv6,typematches the ICMP type andcode
matches the ICMP code. Each is specified as a decimal number between 0 and 255, inclusive.

Whendl_type andnw_proto take other values, the values of these settings are ignored (seeFlow
Syntaxabove).

table=number
For flow dump commands, limits the flows dumped to those in the table with the given number
between 0 and 254. If not specified (or if 255 is specified asnumber), then flows in all tables are
dumped.

For flow table modification commands, behavior varies based on the OpenFlow version used to
connect to the switch:

OpenFlow 1.0
OpenFlow 1.0 does not supporttable for modifying flows. ovs−ofctl will exit with an
error if table (other thantable=255) is specified for a switch that only supports Open-
Flow 1.0.

In OpenFlow 1.0, the switch chooses the table into which to insert a new flow. The Open
vSwitch software switch always chooses table 0. Other Open vSwitch datapaths and
other OpenFlow implementations may choose different tables.

The OpenFlow 1.0 behavior in Open vSwitch for modifying or removing flows depends
on whether−−strict is used.Without −−strict, the command applies to matching flows
in all tables. With −−strict, the command will operate on any single matching flow in
any table; it will do nothing if there are matches in more than one table. (The distinction
between these behaviors only matters if non-OpenFlow 1.0 commands were also used,
because OpenFlow 1.0 alone cannot add flows with the same matching criteria to multi-
ple tables.)

OpenFlow 1.0 with table_id extension
Open vSwitch implements an OpenFlow extension that allows the controller to specify
the table on which to operate.ovs−ofctl automatically enables the extension whentable
is specified and OpenFlow 1.0 is used. ovs−ofctl automatically detects whether the
switch supports the extension. Asof this writing, this extension is only known to be
implemented by Open vSwitch.

With this extension,ovs−ofctl operates on the requested table whentable is specified,
and acts as described for OpenFlow 1.0 above when notable is specified (or forta-
ble=255).

OpenFlow 1.1
OpenFlow 1.1 requires flow table modification commands to specify a table.Whentable
is not specified (ortable=255is specified),ovs−ofctl defaults to table 0.

OpenFlow 1.2 and later
OpenFlow 1.2 and later allow flow deletion commands, but not other flow table modifica-
tion commands, to operate on all flow tables, with the behavior described above for
OpenFlow 1.0.

Open vSwitch 2.4.90 12

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

metadata=value[/mask]
Matchesvalueeither exactly or with optionalmaskin the metadata field.valueandmaskare 64-bit
integers, by default in decimal (use a0x prefix to specify hexadecimal). Arbitrarymaskvalues are
allowed: a 1-bit inmaskindicates that the corresponding bit invaluemust match exactly, and a
0-bit wildcards that bit. Matching on metadata was added in Open vSwitch 1.8.

The following shorthand notations are also available:

ip Same asdl_type=0x0800.

ipv6 Same asdl_type=0x86dd.

icmp Same asdl_type=0x0800,nw_proto=1.

icmp6 Same asdl_type=0x86dd,nw_proto=58.

tcp Same asdl_type=0x0800,nw_proto=6.

tcp6 Same asdl_type=0x86dd,nw_proto=6.

udp Same asdl_type=0x0800,nw_proto=17.

udp6 Same asdl_type=0x86dd,nw_proto=17.

sctp Same asdl_type=0x0800,nw_proto=132.

sctp6 Same asdl_type=0x86dd,nw_proto=132.

arp Same asdl_type=0x0806.

rarp Same asdl_type=0x8035.

mpls Same asdl_type=0x8847.

mplsm Same asdl_type=0x8848.

The following field assignments require support for the NXM (Nicira Extended Match) extension to Open-
Flow. When one of these is specified,ovs−ofctl will automatically attempt to negotiate use of this exten-
sion. If the switch does not support NXM, thenovs−ofctl will report a fatal error.

vlan_tci=tci[/mask]
Matches modified VLAN TCItci. If maskis omitted,tci is the exact VLAN TCI to match; ifmask
is specified, then a 1-bit inmaskindicates that the corresponding bit intci must match exactly, and
a 0-bit wildcards that bit.Both tci andmaskare 16-bit values that are decimal by default; use a0x
prefix to specify them in hexadecimal.

The value thatvlan_tci matches against is 0 for a packet that has no 802.1Q header. Otherwise, it
is the TCI value from the 802.1Q header with the CFI bit (with value0x1000) forced to 1.

Examples:

vlan_tci=0
Match only packets without an 802.1Q header.

vlan_tci=0xf123
Match packets tagged with priority 7 in VLAN 0x123.

vlan_tci=0x1123/0x1fff
Match packets tagged with VLAN 0x123 (and any priority).

vlan_tci=0x5000/0xf000
Match packets tagged with priority 2 (in any VLAN).

vlan_tci=0/0xfff
Match packets with no 802.1Q header or tagged with VLAN 0 (and any priority).

vlan_tci=0x5000/0xe000
Match packets with no 802.1Q header or tagged with priority 2 (in any VLAN).

Open vSwitch 2.4.90 13

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

vlan_tci=0/0xefff
Match packets with no 802.1Q header or tagged with VLAN 0 and priority 0.

Some of these matching possibilities can also be achieved with dl_vlan anddl_vlan_pcp.

ip_frag=frag_type
When dl_type specifies IP or IPv6,frag_typespecifies what kind of IP fragments or non-frag-
ments to match. The following values offrag_typeare supported:

no Matches only non-fragmented packets.

yes Matches all fragments.

first Matches only fragments with offset 0.

later Matches only fragments with nonzero offset.

not_later
Matches non-fragmented packets and fragments with zero offset.

The ip_frag match type is likely to be most useful innx−match mode. Seethe description of the
set−fragscommand, above, for more details.

arp_spa=ip[/netmask]
arp_tpa=ip[/netmask]

Whendl_type specifies either ARP or RARP, arp_spa andarp_tpa match the source and target
IPv4 address, respectively. An address may be specified as an IP address or host name (e.g.
192.168.1.1or www.example.com). Theoptionalnetmaskallows restricting a match to an IPv4
address prefix. The netmask may be specified as a dotted quad (e.g.192.168.1.0/255.255.255.0)
or as a CIDR block (e.g.192.168.1.0/24).

arp_sha=xx:xx:xx:xx:xx:xx
arp_tha=xx:xx:xx:xx:xx:xx

Whendl_type specifies either ARP or RARP, arp_sha andarp_tha match the source and target
hardware address, respectively. An address is specified as 6 pairs of hexadecimal digits delimited
by colons (e.g.00:0A:E4:25:6B:B0).

arp_sha=xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx
arp_tha=xx:xx:xx:xx:xx:xx/xx:xx:xx:xx:xx:xx

Whendl_type specifies either ARP or RARP, arp_sha andarp_tha match the source and target
hardware address, respectively. An address is specified as 6 pairs of hexadecimal digits delimited
by colons (e.g.00:0A:E4:25:6B:B0), with a wildcard mask following the slash.

ipv6_src=ipv6[/netmask]
ipv6_dst=ipv6[/netmask]

Whendl_type is 0x86dd (possibly via shorthand, e.g.,ipv6 or tcp6), matches IPv6 source (or des-
tination) addressipv6, which may be specified as defined in RFC 2373. The preferred format is
x:x:x:x:x:x:x:x, wherex are the hexadecimal values of the eight 16-bit pieces of the address.A
single instance of:: may be used to indicate multiple groups of 16-bits of zeros.The optionalnet-
maskallows restricting a match to an IPv6 address prefix.A netmask is specified as an IPv6
address (e.g.2001:db8:3c4d:1::/ffff:ffff:ffff:ffff::) or a CIDR block (e.g.2001:db8:3c4d:1::/64).
Open vSwitch 1.8 and later support arbitrary masks; earlier versions support only CIDR masks,
that is, CIDR block and IPv6 addresses that are equivalent to CIDR blocks.

ipv6_label=label
When dl_type is 0x86dd (possibly via shorthand, e.g.,ipv6 or tcp6), matches IPv6 flow label
label.

nd_target=ipv6[/netmask]
Whendl_type, nw_proto, and icmp_type specify IPv6 Neighbor Discovery (ICMPv6 type 135 or
136), matches the target addressipv6. ipv6 is in the same format described earlier for theipv6_src
andipv6_dstfields.

Open vSwitch 2.4.90 14

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

nd_sll=xx:xx:xx:xx:xx:xx
Whendl_type, nw_proto, and icmp_type specify IPv6 Neighbor Solicitation (ICMPv6 type 135),
matches the source link−layer address option. An address is specified as 6 pairs of hexadecimal
digits delimited by colons.

nd_tll=xx:xx:xx:xx:xx:xx
When dl_type, nw_proto, and icmp_type specify IPv6 Neighbor Advertisement (ICMPv6 type
136), matches the target link−layer address option.An address is specified as 6 pairs of hexadeci-
mal digits delimited by colons.

mpls_bos=bos
When dl_type is 0x8847 or 0x8848 (possibly via shorthand e.g.,mpls or mplsm), matches the
bottom-of-stack bit of the outer-most MPLS label stack entry. Valid values are 0 and 1.

If 1 then for a packet with a well-formed MPLS label stack the bottom-of-stack bit indicates that
the outer label stack entry is also the inner-most label stack entry and thus that is that there is only
one label stack entry present.Conversely, if 0 then for a packet with a well-formed MPLS label
stack the bottom-of-stack bit indicates that the outer label stack entry is not the inner-most label
stack entry and thus there is more than one label stack entry present.

mpls_label=label
When dl_type is 0x8847 or 0x8848 (possibly via shorthand e.g.,mpls or mplsm), matches the
label of the outer MPLS label stack entry. The label is a 20-bit value that is decimal by default; use
a0x prefix to specify them in hexadecimal.

mpls_tc=tc
When dl_type is 0x8847 or 0x8848 (possibly via shorthand e.g.,mpls or mplsm), matches the
traffic-class of the outer MPLS label stack entry. Valid values are between 0 (lowest) and 7 (high-
est).

tun_id=tunnel-id[/mask]
tunnel_id=tunnel-id[/mask]

Matches tunnel identifiertunnel-id. Only packets that arrive over a tunnel that carries a key (e.g.
GRE with the RFC 2890 key extension and a nonzero key value) will have a nonzero tunnel ID.If
maskis omitted,tunnel-idis the exact tunnel ID to match; ifmaskis specified, then a 1-bit inmask
indicates that the corresponding bit intunnel-idmust match exactly, and a 0-bit wildcards that bit.

tun_flags=flags
Matches flags indicating various aspects of the tunnel encapsulation. Currently, there is only one
flag defined:

oam: The tunnel protocol indicated that this is an OAM control packet.

Flags can be prefixed by+ or - to indicate that the flag should be matched as either present or not
present, respectively. In addition, flags can be specified without a prefix and separated by| to indi-
cate an exact match.

Note that it is possible for newer version of Open vSwitch to introduce additional flags with vary-
ing meaning. It is therefore not recommended to use an exact match on this field since the behav-
ior of these new flags is unknown and should be ignored.

For non-tunneled packets, the value is 0.

This field was introduced in Open vSwitch 2.5.

tun_src=ip[/netmask]
tun_dst=ip[/netmask]

Matches tunnel IPv4 source (or destination) addressip. Only packets that arrive over a tunnel will
have nonzero tunnel addresses.The address may be specified as an IP address or host name (e.g.
192.168.1.1or www.example.com). Theoptionalnetmaskallows restricting a match to a masked
IPv4 address. The netmask may be specified as a dotted quad (e.g.192.168.1.0/255.255.255.0) or
as a CIDR block (e.g.192.168.1.0/24).

Open vSwitch 2.4.90 15

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

tun_gbp_id=value[/mask]
tun_gbp_flags=value[/mask]

Matches the group policy identifier and flags in the VXLAN header. Only packets that arrive over
a VXLAN tunnel with the "gbp" extension enabled can have this field set. The fields may also be
referred to by NXM_NX_TUN_GBP_ID[] (16 bits) and NXM_NX_TUN_GBP_FLAGS[] (8 bits)
in the context of field manipulation actions. If these fields are set and the packet matched by the
flow is encapsulated in a VXLAN-GBP tunnel, then the policy identifier and flags are transmitted
to the destination VXLAN tunnel endpoint.

Thetun_gbp_flagsfield has the following format:

+-+-+-+-+-+-+-+-+
|-|D|-|-|A|-|-|-|
+-+-+-+-+-+-+-+-+

D := Don’t Learn bit. When set, this bit indicates that the egress tunnel endpoint MUST NOT
learn the source address of the encapsulated frame.

A := Indicates that the group policy has already been applied to this packet. Policies MUST
NOT be applied by devices when the A bit is set.

For more information, please see the corresponding IETF draft: https://tools.ietf.org/html/draft-
smith-vxlan-group-policy

tun_metadataidx[=value[/mask]]
Matchesvalueeither exactly or with optionalmaskin tunnel metadata field numberidx (numbered
from 0 to 63). The act of specifying a field implies a match on the existence of that field in the
packet in addition to the masked value. As a shorthand, it is possible to specify only the field name
to simply match on an option being present.

Tunnel metadata fields can be dynamically assigned onto the data contained in the options of Gen-
ev epackets using the commands described in the sectionOpenFlow Switch Geneve Option Ta-
ble Commands. Once assigned, the length of the field is variable according to the size of the
option. Before updating a mapping in the option table, flows with references to it should be
removed, otherwise the result is non-deterministic.

These fields were introduced in Open vSwitch 2.5.

regidx=value[/mask]
Matchesvalueeither exactly or with optionalmaskin register numberidx. The valid range ofidx
depends on the switch.valueandmaskare 32-bit integers, by default in decimal (use a0x prefix
to specify hexadecimal). Arbitrarymaskvalues are allowed: a 1-bit inmaskindicates that the cor-
responding bit invaluemust match exactly, and a 0-bit wildcards that bit.

When a packet enters an OpenFlow switch, all of the registers are set to 0. Only explicit actions
change register values.

xregidx=value[/mask]
Matchesvalue either exactly or with optionalmask in 64-bit ‘‘extended register’’ number idx.
Each of the 64-bit extended registers overlays two of the 32-bit registers:xreg0 overlays reg0 and
reg1, with reg0 supplying the most-significant bits ofxreg0 andreg1 the least-significant.xreg1
similarly overlaysreg2andreg3, and so on.

These fields were added in Open vSwitch 2.3 to conform with the OpenFlow 1.5 specification.
OpenFlow 1.5 calls these fields just the ‘‘packet registers,’’ but Open vSwitch already had 32-bit
registers by that name, which is why Open vSwitch refers to the standard registers as ‘‘extended
registers’’.

pkt_mark= value[/mask]
Matches packet metadata markvalueeither exactly or with optionalmask. The mark is associated
data that may be passed into other system components in order to facilitate interaction between

Open vSwitch 2.4.90 16

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

subsystems. OnLinux this corresponds to the skb mark but the exact implementation is platform-
dependent.

actset_output=port
Matches the output port currently in the OpenFlow action set, whereport may be an OpenFlow
port number or keyword (e.g.LOCAL). If there is no output port in the OpenFlow action set, or if
the output port will be ignored (e.g. because there is an output group in the OpenFlow action set),
then the value will beUNSET.

This field was introduced in Open vSwitch 2.4 to conform with the OpenFlow 1.5 specification.

conj_id=value
Matches the given 32-bit valueagainst the conjunction ID. This is used only with theconjunction
action (see below).

This field was introduced in Open vSwitch 2.4.

Defining IPv6 flows (those withdl_type equal to 0x86dd) requires support for NXM. The following short-
hand notations are available for IPv6-related flows:

ipv6 Same asdl_type=0x86dd.

tcp6 Same asdl_type=0x86dd,nw_proto=6.

udp6 Same asdl_type=0x86dd,nw_proto=17.

sctp6 Same asdl_type=0x86dd,nw_proto=132.

icmp6 Same asdl_type=0x86dd,nw_proto=58.

Finally, field assignments toduration , n_packets, or n_bytes are ignored to allow output from the
dump−flowscommand to be used as input for other commands that parse flows.

The add−flow, add−flows, and mod−flowscommands require an additional field, which must be the final
field specified:

actions=[action][,action...]
Specifies a comma-separated list of actions to take on a packet when the flow entry matches. If no
action is specified, then packets matching the flow are dropped.The following forms ofactionare
supported:

port
output:port

Outputs the packet to OpenFlow port numberport. If port is the packet’s input port, the
packet is not output.

output:src[start..end]
Outputs the packet to the OpenFlow port number read fromsrc, which must be an NXM
field as described above. For example,output:NXM_NX_REG0[16..31] outputs to the
OpenFlow port number written in the upper half of register 0. If the port number is the
packet’s input port, the packet is not output.

This form of output was added in Open vSwitch 1.3.0. This form ofoutput uses an
OpenFlow extension that is not supported by standard OpenFlow switches.

group:group_id
Outputs the packet to the OpenFlow group group_id. Group tables are only supported in
OpenFlow 1.1+. See Group Syntax for more details.

normal
Subjects the packet to the device’s normal L2/L3 processing. (This action is not imple-
mented by all OpenFlow switches.)

flood Outputs the packet on all switch physical ports other than the port on which it was
received and any ports on which flooding is disabled (typically, these would be ports dis-
abled by the IEEE 802.1D spanning tree protocol).

Open vSwitch 2.4.90 17

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

all Outputs the packet on all switch physical ports other than the port on which it was
received.

local Outputs the packet on the ‘‘local port,’’ w hich corresponds to the network device that has
the same name as the bridge.

in_port
Outputs the packet on the port from which it was received.

controller(key=value...)
Sends the packet to the OpenFlow controller as a ‘‘packet in’’ message. Thesupported
key-value pairs are:

max_len=nbytes
Limit to nbytesthe number of bytes of the packet to send to the controller. By
default the entire packet is sent.

reason=reason
Specify reasonas the reason for sending the message in the ‘‘packet in’’ mes-
sage. The supported reasons areaction (the default), no_match, and
invalid_ttl .

id=controller-id
Specify controller-id, a 16-bit integer, as the connection ID of the OpenFlow
controller or controllers to which the ‘‘packet in’’ message should be sent.The
default is zero.Zero is also the default connection ID for each controller con-
nection, and a given controller connection will only have a nonzero connection
ID if its controller uses theNXT_SET_CONTROLLER_ID Nicira extension
to OpenFlow.

Any reasonother thanaction and any nonzerocontroller-id uses a Nicira vendor exten-
sion that, as of this writing, is only known to be implemented by Open vSwitch (version
1.6 or later).

controller
controller [:nbytes]

Shorthand forcontroller() or controller(max_len=nbytes), respectively.

enqueue(port,queue)
Enqueues the packet on the specifiedqueuewithin portport, which must be an OpenFlow
port number or keyword (e.g.LOCAL). The number of supported queues depends on
the switch; some OpenFlow implementations do not support queuing at all.

drop Discards the packet, so no further processing or forwarding takes place.If a drop action
is used, no other actions may be specified.

mod_vlan_vid:vlan_vid
Modifies the VLAN id on a packet. TheVLAN tag is added or modified as necessary to
match the value specified.If the VLAN tag is added, a priority of zero is used (see the
mod_vlan_pcpaction to set this).

mod_vlan_pcp:vlan_pcp
Modifies the VLAN priority on a packet. TheVLAN tag is added or modified as neces-
sary to match the value specified.Valid values are between 0 (lowest) and 7 (highest).If
the VLAN tag is added, a vid of zero is used (see themod_vlan_vidaction to set this).

strip_vlan
Strips the VLAN tag from a packet if it is present.

push_vlan:ethertype
Push a new VLAN tag onto the packet. Ethertypeis used as the Ethertype for the tag.
Only ethertype 0x8100 should be used. (0x88a8 which the spec allows isn’t supported at
the moment.)A priority of zero and the tag of zero are used for the new tag.

Open vSwitch 2.4.90 18

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

push_mpls:ethertype
Changes the packet’s Ethertype toethertype, which must be either0x8847or 0x8848, and
pushes an MPLS LSE.

If the packet does not already contain any MPLS labels then an initial label stack entry is
pushed. Thelabel stack entry’s label is 2 if the packet contains IPv6 and 0 otherwise, its
default traffic control value is the low 3 bits of the packet’s DSCP value (0 if the packet is
not IP), and its TTL is copied from the IP TTL (64 if the packet is not IP).

If the packet does already contain an MPLS label, pushes a new outermost label as a copy
of the existing outermost label.

A l imitation of the implementation is that processing of actions will stop ifpush_mpls
follows anotherpush_mplsunless there is apop_mpls in between.

pop_mpls:ethertype
Strips the outermost MPLS label stack entry. Currently the implementation restricts
ethertypeto a non-MPLS Ethertype and thuspop_mplsshould only be applied to packets
with an MPLS label stack depth of one. A further limitation is that processing of actions
will stop if pop_mplsfollows anotherpop_mplsunless there is apush_mplsin between.

mod_dl_src:mac
Sets the source Ethernet address tomac.

mod_dl_dst:mac
Sets the destination Ethernet address tomac.

mod_nw_src:ip
Sets the IPv4 source address toip.

mod_nw_dst:ip
Sets the IPv4 destination address toip.

mod_tp_src:port
Sets the TCP or UDP or SCTP source port toport.

mod_tp_dst:port
Sets the TCP or UDP or SCTP destination port toport.

mod_nw_tos:tos
Sets the DSCP bits in the IPv4 ToS/DSCP or IPv6 traffic class field totos, which must be
a multiple of 4 between 0 and 255.This action does not modify the two least significant
bits of the ToS field (the ECN bits).

mod_nw_ecn:ecn
Sets the ECN bits in the IPv4 ToS or IPv6 traffic class field toecn, which must be a value
between 0 and 3, inclusive. This action does not modify the six most significant bits of
the field (the DSCP bits).

Requires OpenFlow 1.1 or later.

mod_nw_ttl:ttl
Sets the IPv4 TTL or IPv6 hop limit field tottl, which is specified as a decimal number
between 0 and 255, inclusive. Switch behavior when settingttl to zero is not well speci-
fied, though.

Requires OpenFlow 1.1 or later.

The following actions are Nicira vendor extensions that, as of this writing, are only known to be
implemented by Open vSwitch:

resubmit:port
resubmit([port],[table])

Re-searches this OpenFlow flow table (or the table whose number is specified bytable)
with the in_port field replaced byport (if port is specified) and executes the actions

Open vSwitch 2.4.90 19

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

found, if any, in addition to any other actions in this flow entry.

Recursive resubmit actions are obeyed up to an implementation-defined maximum
depth. OpenvSwitch 1.0.1 and earlier did not support recursion; Open vSwitch before
1.2.90 did not supporttable.

set_tunnel:id
set_tunnel64:id

If outputting to a port that encapsulates the packet in a tunnel and supports an identifier
(such as GRE), sets the identifier toid. If the set_tunnel form is used andid fits in 32
bits, then this uses an action extension that is supported by Open vSwitch 1.0 and later.
Otherwise, ifid is a 64-bit value, it requires Open vSwitch 1.1 or later.

set_queue:queue
Sets the queue that should be used toqueuewhen packets are output. The number of sup-
ported queues depends on the switch; some OpenFlow implementations do not support
queuing at all.

pop_queue
Restores the queue to the value it was before anyset_queueactions were applied.

dec_ttl
dec_ttl[(id1,id2)]

Decrement TTL of IPv4 packet or hop limit of IPv6 packet. If the TTL or hop limit is
initially zero or decrementing would make it so, no decrement occurs, as packets reaching
TTL zero must be rejected. Instead, a ‘‘packet-in’’ message with reason code
OFPR_INVALID_TTL is sent to each connected controller that has enabled receiving
them, if any. Processing the current set of actions then stops.However, if the current set
of actions was reached through ‘‘resubmit’’ then remaining actions in outer levels resume
processing. Thisaction also optionally supports the ability to specify a list of valid con-
troller ids. Each of controllers in the list will receive the ‘‘packet_in’’ message only if
they hav eregistered to receive the invalid ttl packets. If controller ids are not specified,
the ‘‘packet_in’’ message will be sent only to the controllers having controller id zero
which have registered for the invalid ttl packets.

set_mpls_label:label
Set the label of the outer MPLS label stack entry of a packet. label should be a 20-bit
value that is decimal by default; use a0x prefix to specify them in hexadecimal.

set_mpls_tc:tc
Set the traffic-class of the outer MPLS label stack entry of a packet. tc should be a in the
range 0 to 7 inclusive.

set_mpls_ttl:ttl
Set the TTL of the outer MPLS label stack entry of a packet. ttl should be in the range 0
to 255 inclusive.

dec_mpls_ttl
Decrement TTL of the outer MPLS label stack entry of a packet. If the TTL is initially
zero or decrementing would make it so, no decrement occurs. Instead, a ‘‘packet-in’’
message with reason codeOFPR_INVALID_TTL is sent to the main controller (id
zero), if it has enabled receiving them. Processing the current set of actions then stops.
However, if the current set of actions was reached through ‘‘resubmit’’ then remaining
actions in outer levels resume processing.

note:[hh]...
Does nothing at all.Any number of bytes represented as hex digits hh may be included.
Pairs of hex digits may be separated by periods for readability. Thenote action’s format
doesn’t include an exact length for its payload, so the provided bytes will be padded on
the right by enough bytes with value 0 to make the total number 6 more than a multiple of

Open vSwitch 2.4.90 20

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

8.

move:src[start..end]−>dst[start..end]
Copies the named bits from fieldsrc to fielddst. src anddstmust be NXM field names as
defined innicira−ext.h, e.g. NXM_OF_UDP_SRC or NXM_NX_REG0. Each start
and end pair, which are inclusive, must specify the same number of bits and must fit
within its respective field. Shorthandsfor [start..end] exist: use[bit] to specify a single
bit or [] to specify an entire field.

Examples:move:NXM_NX_REG0[0..5]−>NXM_NX_REG1[26..31] copies the six bits
numbered 0 through 5, inclusive, in register 0 into bits 26 through 31, inclusive;
move:NXM_NX_REG0[0..15]−>NXM_OF_VLAN_TCI[] copies the least significant
16 bits of register 0 into the VLAN TCI field.

In OpenFlow 1.0 through 1.4,move ordinarily uses an Open vSwitch extension to Open-
Flow. In OpenFlow 1.5, move uses the OpenFlow 1.5 standardcopy_field action. The
ONF has also madecopy_field available as an extension to OpenFlow 1.3. Open
vSwitch 2.4 and later understands this extension and uses it if a controller uses it, but for
backward compatibility with older versions of Open vSwitch,ovs−ofctl does not use it.

set_field:value[/mask]−>dst
load:value−>dst[start..end]

Loads a literal value into a field or part of a field.With set_field, value and the optional
mask are given in the customary syntax for fielddst, which is expressed as a field name.
For example,set_field:00:11:22:33:44:55->eth_srcsets the Ethernet source address to
00:11:22:33:44:55. With load, valuemust be an integer value (in decimal or prefixed by
0x for hexadecimal) anddst is the NXM or OXM name for the field.For example,
load:0x001122334455->OXM_OF_ETH_DST[] has the same effect as the prior
set_fieldexample.

The two forms exist for historical reasons. Open vSwitch 1.1 introduced
NXAST_REG_LOAD as a Nicira extension to OpenFlow 1.0 and usedload to express
it. Later, OpenFlow 1.2 introduced a standardOFPAT_SET_FIELD action that was
restricted to loading entire fields, so Open vSwitch added the formset_field with this
restriction. OpenFlow 1.5 extendedOFPAT_SET_FIELD to the point that it became a
superset ofNXAST_REG_LOAD . Open vSwitch translates either syntax as necessary
for the OpenFlow version in use: in OpenFlow 1.0 and 1.1,NXAST_REG_LOAD ; in
OpenFlow 1.2, 1.3, and 1.4,NXAST_REG_LOAD for load or for loading a subfield,
OFPAT_SET_FIELD otherwise; and OpenFlow 1.5 and later,OFPAT_SET_FIELD.

push:src[start..end]
Pushesstart to endbits inclusive, in fields on top of the stack.

Example:push:NXM_NX_REG2[0..5] push the value stored in register 2 bits 0 through
5, inclusive, on to the internal stack.

pop:dst[start..end]
Pops from the top of the stack, retrieves the start to end bits inclusive, from the value
popped and store them into the corresponding bits indst.

Example:pop:NXM_NX_REG2[0..5] pops the value from top of the stack. Set register
2 bits 0 through 5, inclusive, based on bits 0 through 5 from the value just popped.

multipath(fields, basis, algorithm, n_links, arg, dst[start..end])
Hashesfieldsusingbasisas a universal hash parameter, then the applies multipath link
selectionalgorithm (with parameterarg) to choose one ofn_linksoutput links numbered
0 through n_links minus 1, and stores the link intodst[start..end], which must be an
NXM field as described above.

fieldsmust be one of the following:

Open vSwitch 2.4.90 21

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

eth_src Hashes Ethernet source address only.

symmetric_l4
Hashes Ethernet source, destination, and type, VLAN ID, IPv4/IPv6 source, des-
tination, and protocol, and TCP or SCTP (but not UDP) ports. The hash is com-
puted so that pairs of corresponding flows in each direction hash to the same
value, in environments where L2 paths are the same in each direction.UDP
ports are not included in the hash to support protocols such as VXLAN that use
asymmetric ports in each direction.

symmetric_l3l4
Hashes IPv4/IPv6 source, destination, and protocol, and TCP or SCTP (but not
UDP) ports. Like symmetric_l4, this is a symmetric hash, but by excluding L2
headers it is more effective in environments with asymmetric L2 paths (e.g.
paths involving VRRP IP addresses on a router). Not an effective hash function
for protocols other than IPv4 and IPv6, which hash to a constant zero.

symmetric_l3l4+udp
Like symmetric_l3l4+udp, but UDP ports are included in the hash.This is a
more effective hash when asymmetric UDP protocols such as VXLAN are not a
consideration.

algorithm must be one ofmodulo_n, hash_threshold, hrw , and iter_hash. Only the
iter_hashalgorithm usesarg.

Refer tonicira−ext.h for more details.

bundle(fields, basis, algorithm, slave_type, slaves:[s1, s2, ...])
Hashesfields using basis as a universal hash parameter, then applies the bundle link
selectionalgorithm to choose one of the listed slaves represented asslave_type. Cur-
rently the only supportedslave_typeis ofport . Thus, eachs1 throughsN should be an
OpenFlow port number. Outputs to the selected slave.

Currently, fields must be eithereth_src, symmetric_l4, symmetric_l3l4, or symmet-
ric_l3l4+udp, andalgorithmmust be one ofhrw andactive_backup.

Example: bundle(eth_src,0,hrw,ofport,slaves:4,8) uses an Ethernet source hash with
basis 0, to select between OpenFlow ports 4 and 8 using the Highest Random Weight
algorithm.

Refer tonicira−ext.h for more details.

bundle_load(fields, basis, algorithm, slave_type, dst[start..end], slaves:[s1, s2, ...])
Has the same behavior as thebundle action, with one exception. Insteadof outputting to
the selected slave, it writes its selection todst[start..end], which must be an NXM field as
described above.

Example:bundle_load(eth_src, 0, hrw, ofport, NXM_NX_REG0[], slaves:4, 8) uses
an Ethernet source hash with basis 0, to select between OpenFlow ports 4 and 8 using the
Highest Random Weight algorithm, and writes the selection toNXM_NX_REG0[] .

Refer tonicira−ext.h for more details.

learn(argument[,argument]...)
This action adds or modifies a flow in an OpenFlow table, similar toovs−ofctl −−strict
mod−flows. The arguments specify the flow’s match fields, actions, and other properties,
as follows. At least one match criterion and one action argument should ordinarily be
specified.

idle_timeout=seconds
hard_timeout=seconds

Open vSwitch 2.4.90 22

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

priority= value
cookie=value
send_flow_rem

These arguments have the same meaning as in the usualovs−ofctl flow syntax.

fin_idle_timeout=seconds
fin_hard_timeout=seconds

Adds afin_timeout action with the specified arguments to the new flow. This
feature was added in Open vSwitch 1.5.90.

table=number
The table in which the new flow should be inserted.Specify a decimal number
between 0 and 254. The default, iftable is unspecified, is table 1.

delete_learned
This flag enables deletion of the learned flows when the flow with the learn
action is removed. Specifically, when the lastlearn action with this flag and
particulartable andcookievalues is removed, the switch deletes all of the flows
in the specified table with the specified cookie.

This flag was added in Open vSwitch 2.4.

field=value
field[start..end]=src[start..end]
field[start..end]

Adds a match criterion to the new flow.

The first form specifies thatfield must match the literalvalue, e.g.
dl_type=0x0800. All of the fields and values forovs−ofctl flow syntax are
available with their usual meanings.

The second form specifies thatfield[start..end] in the new flow must match
src[start..end] taken from the flow currently being processed.

The third form is a shorthand for the second form.It specifies that
field[start..end] in the new flow must matchfield[start..end] taken from the flow
currently being processed.

load:value−>dst[start..end]
load:src[start..end]−>dst[start..end]

Adds aload action to the new flow.

The first form loads the literalvalue into bits start throughend, inclusive, in
field dst. Its syntax is the same as theload action described earlier in this sec-
tion.

The second form loadssrc[start..end], a value from the flow currently being pro-
cessed, into bitsstart throughend, inclusive, in fielddst.

output:field[start..end]
Add anoutput action to the new flow’s actions, that outputs to the OpenFlow
port taken fromfield[start..end], which must be an NXM field as described
above.

For best performance, segregate learned flows into a table (usingtable=number) that is
not used for any other flows except possibly for a lowest-priority ‘‘catch-all’’ fl ow, that is,
a flow with no match criteria. (This is why the default table is 1, to keep the learned
flows separate from the primary flow table 0.)

clear_actions
Clears all the actions in the action set immediately.

Open vSwitch 2.4.90 23

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

write_actions([action][,action...])
Add the specific actions to the action set. The syntax ofactions is the same as in the
actions=field. Theaction set is carried between flow tables and then executed at the end
of the pipeline.

The actions in the action set are applied in the following order, as required by the Open-
Flow specification, regardless of the order in which they were added to the action set.
Except as specified otherwise below, the action set only holds at most a single action of
each type. When more than one action of a single type is written to the action set, the one
written later replaces the earlier action:

1. strip_vlan
pop_mpls

2. push_mpls

3. push_vlan

4. dec_ttl
dec_mpls_ttl

5. load
move
mod_dl_dst
mod_dl_src
mod_nw_dst
mod_nw_src
mod_nw_tos
mod_nw_ecn
mod_nw_ttl
mod_tp_dst
mod_tp_src
mod_vlan_pcp
mod_vlan_vid
set_field
set_tunnel
set_tunnel64
The action set can contain any number of these actions, with cumulative effect.
They will be applied in the order as added. That is, when multiple actions mod-
ify the same part of a field, the later modification takes effect, and when they
modify different parts of a field (or different fields), then both modifications are
applied.

6. set_queue

7. group
output
resubmit
If more than one of these actions is present, then the one listed earliest above is
executed and the others are ignored, regardless of the order in which they were
added to the action set. (If none of these actions is present, the action set has no
real effect, because the modified packet is not sent anywhere and thus the modi-
fications are not visible.)

Only the actions listed above may be written to the action set.

write_metadata:value[/mask]
Updates the metadata field for the flow. If mask is omitted, the metadata field is set
exactly tovalue; if maskis specified, then a 1-bit inmaskindicates that the corresponding
bit in the metadata field will be replaced with the corresponding bit fromvalue. Both

Open vSwitch 2.4.90 24

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

valueandmaskare 64-bit values that are decimal by default; use a0x prefix to specify
them in hexadecimal.

meter:meter_id
Apply themeter_idbefore any other actions. If a meter band rate is exceeded, the packet
may be dropped, or modified, depending on the meter band type. See the description of
theMeter Table Commands, above, for more details.

goto_table:table
Indicates the next table in the process pipeline.

fin_timeout(argument[,argument])
This action changes the idle timeout or hard timeout, or both, of this OpenFlow rule when
the rule matches a TCP packet with the FIN or RST flag. When such a packet is
observed, the action reduces the rule’s timeouts to those specified on the action. If the
rule’s existing timeout is already shorter than the one that the action specifies, then that
timeout is unaffected.

argumenttakes the following forms:

idle_timeout=seconds
Causes the flow to expire after the given number of seconds of inactivity.

hard_timeout=seconds
Causes the flow to expire after the given number of seconds, regardless of activ-
ity. (secondsspecifies time since the flow’s creation, not since the receipt of the
FIN or RST.)

This action was added in Open vSwitch 1.5.90.

sample(argument[,argument]...)
Samples packets and sends one sample for every sampled packet.

argumenttakes the following forms:

probability= packets
The number of sampled packets out of 65535. Must be greater or equal to 1.

collector_set_id=id
The unsigned 32-bit integer identifier of the set of sample collectors to send
sampled packets to. Defaults to 0.

obs_domain_id=id
When sending samples to IPFIX collectors, the unsigned 32-bit integer Observa-
tion Domain ID sent in every IPFIX flow record. Defaults to 0.

obs_point_id=id
When sending samples to IPFIX collectors, the unsigned 32-bit integer Observa-
tion Point ID sent in every IPFIX flow record. Defaults to 0.

Refer toovs−vswitchd.conf.db(8) for more details on configuring sample collector sets.

This action was added in Open vSwitch 1.10.90.

exit This action causes Open vSwitch to immediately halt execution of further actions.Those
actions which have already been executed are unaffected. Any further actions, including
those which may be in other tables, or different levels of the resubmit call stack, are
ignored. Actionsin the action set is still executed (specifyclear_actionsbeforeexit to
discard them).

conjunction(id, k/n)
An individual OpenFlow flow can match only a single value for each field.However, sit-
uations often arise where one wants to match one of a set of values within a field or fields.
For matching a single field against a set, it is straightforward and efficient to add multiple
flows to the flow table, one for each value in the set.For example, one might use the

Open vSwitch 2.4.90 25

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

following flows to send packets with IP source addressa, b, c, or d to the OpenFlow con-
troller:

ip,ip_src=a actions=controller
ip,ip_src=b actions=controller
ip,ip_src=c actions=controller
ip,ip_src=d actions=controller

Similarly, these flows send packets with IP destination addresse, f, g, or h to the Open-
Flow controller:

ip,ip_dst=eactions=controller
ip,ip_dst=f actions=controller
ip,ip_dst=g actions=controller
ip,ip_dst=h actions=controller

Installing all of the above flows in a single flow table yields a disjunctive effect: a packet
is sent to the controller ifip_src ∈ { a,b,c,d} or ip_dst ∈ { e,f,g,h} (or both). (Pedanti-
cally, if both of the above sets of flows are present in the flow table, they should have dif-
ferent priorities, because OpenFlow says that the results are undefined when two flows
with same priority can both match a single packet.)

Suppose, on the other hand, one wishes to match conjunctively, that is, to send a packet to
the controller only if bothip_src ∈ { a,b,c,d} and ip_dst ∈ { e,f,g,h}. This requires 4× 4
= 16 flows, one for each possible pairing ofip_src andip_dst. That is acceptable for our
small example, but it does not gracefully extend to larger sets or greater numbers of
dimensions.

The conjunction action is a solution for conjunctive matches that is built into Open
vSwitch. A conjunction action ties groups of individual OpenFlow flows into higher-
level ‘ ‘conjunctive flows’’. Each group corresponds to one dimension, and each flow
within the group matches one possible value for the dimension.A packet that matches
one flow from each group matches the conjunctive flow.

To implement a conjunctive flow with conjunction, assign the conjunctive flow a 32-bit
id, which must be unique within an OpenFlow table. Assigneach of then ≥ 2 dimensions
a unique number from 1 ton; the ordering is unimportant. Add one flow to the Open-
Flow flow table for each possible value of each dimension withconjunction(id, k/n) as
the flow’s actions, wherek is the number assigned to the flow’s dimension. Together,
these flows specify the conjunctive flow’s match condition. When the conjunctive match
condition is met, Open vSwitch looks up one more flow that specifies the conjunctive
flow’s actions and receives its statistics. This flow is found by settingconj_id to the
specifiedid and then again searching the flow table.

The following flows provide an example. Whenever the IP source is one of the values in
the flows that match on the IP source (dimension 1 of 2),and the IP destination is one of
the values in the flows that match on IP destination (dimension 2 of 2), Open vSwitch
searches for a flow that matchesconj_id against the conjunction ID (1234), finding the
first flow listed below.

conj_id=1234 actions=controller
ip,ip_src=10.0.0.1 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.4 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.6 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.7 actions=conjunction(1234, 1/2)
ip,ip_dst=10.0.0.2 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.5 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.7 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.8 actions=conjunction(1234, 2/2)

Many subtleties exist:

Open vSwitch 2.4.90 26

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

• In the example above, every flow in a single dimension has the same form, that
is, dimension 1 matches onip_src, dimension 2 onip_dst, but this is not a
requirement. Different flows within a dimension may match on different bits
within a field (e.g. IP network prefixes of different lengths, or TCP/UDP port
ranges as bitwise matches), or even on entirely different fields (e.g. to match
packets for TCP source port 80 or TCP destination port 80).

• The flows within a dimension can vary their matches across more than one field,
e.g. to match only specific pairs of IP source and destination addresses or L4
port numbers.

• A flow may have multiple conjunction actions, with differentid values. Thisis
useful for multiple conjunctive flows with overlapping sets. If one conjunctive
flow matches packets with bothip_src ∈ { a,b} and ip_dst ∈ { d,e} and a second
conjunctive flow matchesip_src ∈ { b,c} and ip_dst ∈ { f,g}, for example, then
the flow that matchesip_src=b would have two conjunction actions, one for
each conjunctive flow. The order ofconjunction actions within a list of actions
is not significant.

• A flow with conjunction actions may also includenote actions for annotations,
but not any other kind of actions.(They would not be useful because they would
never be executed.)

• All of the flows that constitute a conjunctive flow with a given id must have the
same priority. (Flows with the sameid but different priorities are currently
treated as different conjunctive flows, that is, currentlyid values need only be
unique within an OpenFlow table at a given priority. This behavior isn’t guaran-
teed to stay the same in later releases, so please useid values unique within an
OpenFlow table.)

• Conjunctive flows must not overlap with each other, at a giv en priority, that is,
any giv en packet must be able to match at most one conjunctive flow at a giv en
priority. Overlapping conjunctive flows yield unpredictable results.

• Following a conjunctive flow match, the search for the flow with conj_id=id is
done in the same general-purpose way as other flow table searches, so one can
use flows withconj_id=id to act differently depending on circumstances.(One
exception is that the search for theconj_id=id flow itself ignores conjunctive
flows, to avoid recursion.) If the search withconj_id=id fails, Open vSwitch acts
as if the conjunctive flow had not matched at all, and continues searching the
flow table for other matching flows.

• OpenFlow prerequisite checking occurs for the flow with conj_id=id in the same
way as any other flow, e.g. in an OpenFlow 1.1+ context, putting amod_nw_src
action into the example above would require adding anip match, like this:

conj_id=1234,ip actions=mod_nw_src:1.2.3.4,controller

• OpenFlow prerequisite checking also occurs for the individual flows that com-
prise a conjunctive match in the same way as any other flow.

• The flows that constitute a conjunctive flow do not have useful statistics.They
are never updated with byte or packet counts, and so on.(For such a flow, there-
fore, the idle and hard timeouts work much the same way.)

• Conjunctive flows can be a useful building block for negation, that is, inequality
matches like tcp_src ≠ 80. To implement an inequality match, convert it to a
pair of range matches, e.g. 0≤ tcp_src < 80 and 80 < tcp_src ≤ 65535, then
convert each of the range matches into a collection of bitwise matches as
explained above in the description oftcp_src.

Open vSwitch 2.4.90 27

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

• Sometimes there is a choice of which flows include a particular match.For
example, suppose that we added an extra constraint to our example, to match on
ip_src ∈ { a,b,c,d} and ip_dst ∈ { e,f,g,h} and tcp_dst = i. One way to imple-
ment this is to add the new constraint to theconj_id flow, like this:

conj_id=1234,tcp,tcp_dst=i actions=mod_nw_src:1.2.3.4,controller

but this is not recommendedbecause of the cost of the extra flow table lookup.
Instead, add the constraint to the individual flows, either in one of the dimen-
sions or (slightly better) all of them.

• A conjunctive match must have n ≥ 2 dimensions (otherwise a conjunctive
match is not necessary). Open vSwitch enforces this.

• Each dimension within a conjunctive match should ordinarily have more than
one flow. Open vSwitch does not enforce this.

Theconjunction action andconj_id field were introduced in Open vSwitch 2.4.

An opaque identifier called a cookie can be used as a handle to identify a set of flows:

cookie=value
A cookie can be associated with a flow using theadd−flow, add−flows, and mod−flows com-
mands.valuecan be any 64-bit number and need not be unique among flows. If this field is omit-
ted, a default cookie value of 0 is used.

cookie=value/mask
When using NXM, the cookie can be used as a handle for querying, modifying, and deleting flows.
valueandmaskmay be supplied for thedel−flows, mod−flows, dump−flows, and dump−aggre-
gatecommands to limit matching cookies.A 1-bit in maskindicates that the corresponding bit in
cookiemust match exactly, and a 0-bit wildcards that bit.A mask of −1 may be used to exactly
match a cookie.

The mod−flowscommand can update the cookies of flows that match a cookie by specifying the
cookiefield twice (once with a mask for matching and once without to indicate the new value):

ovs−ofctl mod−flows br0 cookie=1,actions=normal
Change all flows’ cookies to 1 and change their actions tonormal.

ovs−ofctl mod−flows br0 cookie=1/−1,cookie=2,actions=normal
Update cookies with a value of 1 to 2 and change their actions tonormal.

The ability to match on cookies was added in Open vSwitch 1.5.0.

The following additional field sets the priority for flows added by theadd−flow andadd−flowscommands.
For mod−flows anddel−flows when−−strict is specified, priority must match along with the rest of the
flow specification. For mod-flows without −−strict, priority is only significant if the command creates a
new flow, that is, non-strictmod−flowsdoes not match on priority and will not change the priority of exist-
ing flows. Othercommands do not allow priority to be specified.

priority= value
The priority at which a wildcarded entry will match in comparison to others.value is a number
between 0 and 65535, inclusive. A highervaluewill match before a lower one. An exact-match
entry will always have priority over an entry containing wildcards, so it has an implicit priority
value of 65535. When adding a flow, if the field is not specified, the flow’s priority will default to
32768.

OpenFlow leaves behavior undefined when two or more flows with the same priority can match a
single packet. Someusers expect ‘‘sensible’’ behavior, such as more specific flows taking prece-
dence over less specific flows, but OpenFlow does not specify this and Open vSwitch does not
implement it. Users should therefore take care to use priorities to ensure the behavior that they
expect.

The add−flow, add−flows, and mod−flows commands support the following additional options.These

Open vSwitch 2.4.90 28

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

options affect only new flows. Thus,for add−flow andadd−flows, these options are always significant, but
for mod−flows they are significant only if the command creates a new flow, that is, their values do not
update or affect existing flows.

idle_timeout=seconds
Causes the flow to expire after the given number of seconds of inactivity. A value of 0 (the
default) prevents a flow from expiring due to inactivity.

hard_timeout=seconds
Causes the flow to expire after the given number of seconds, regardless of activity. A value of 0
(the default) gives the flow no hard expiration deadline.

importance=value
Sets the importance of a flow. The flow entry eviction mechanism can use importance as a factor
in deciding which flow to evict. A value of 0 (the default) makes the flow non-evictable on the
basis of importance. Specify a value between 0 and 65535.

Only OpenFlow 1.4 and later supportimportance.

send_flow_rem
Marks the flow with a flag that causes the switch to generate a ‘‘flow removed’’ message and send
it to interested controllers when the flow later expires or is removed.

check_overlap
Forces the switch to check that the flow match does not overlap that of any different flow with the
same priority in the same table. (This check is expensive so it is best to avoid it.)

The dump−flows, dump−aggregate, del−flow anddel−flows commands support one additional optional
field:

out_port=port
If set, a matching flow must include an output action toport, which must be an OpenFlow port
number or name (e.g.local).

Table Entry Output
The dump−tables and dump−aggregatecommands print information about the entries in a datapath’s
tables. Eachline of output is a flow entry as described inFlow Syntax, above, plus some additional fields:

duration=secs
The time, in seconds, that the entry has been in the table.secsincludes as much precision as the
switch provides, possibly to nanosecond resolution.

n_packets
The number of packets that have matched the entry.

n_bytes
The total number of bytes from packets that have matched the entry.

The following additional fields are included only if the switch is Open vSwitch 1.6 or later and the NXM
flow format is used to dump the flow (see the description of the−−flow-format option below). Thevalues
of these additional fields are approximations only and in particularidle_age will sometimes become
nonzero even for busy flows.

hard_age=secs
The integer number of seconds since the flow was added or modified.hard_ageis displayed only
if it differs from the integer part ofduration . (This is separate fromduration becausemod−flows
restarts thehard_timeout timer without zeroingduration .)

idle_age=secs
The integer number of seconds that have passed without any packets passing through the flow.

Group Syntax
Someovs−ofctl commands accept an argument that describes a group or groups. Such flow descriptions
comprise a seriesfield=valueassignments, separated by commas or white space.(Embedding spaces into a

Open vSwitch 2.4.90 29

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

group description normally requires quoting to prevent the shell from breaking the description into multiple
arguments.). Unless noted otherwise only the last instance of each field is honoured.

group_id=id
The integer group id of group.When this field is specified indel−groupsor dump−groups, the
keyword "all" may be used to designate all groups. This field is required.

type=type
The type of the group.The add-group, add-groups and mod-groups commands require this
field. It is prohibited for other commands. The following keywords designated the allowed types:

all Execute all buckets in the group.

select Execute one bucket in the group. The switch should select the bucket in such a way that
should implement equal load sharing is achieved. Theswitch may optionally select the
bucket based on bucket weights.

indirect
Executes the one bucket in the group.

ff
fast_failover

Executes the first live bucket in the group which is associated with a live port or group.

command_bucket_id=id
The bucket to operate on.The insert-buckets andremove-buckets commands require this field.
It is prohibited for other commands.id may be an integer or one of the following keywords:

all Operate on all buckets in the group. Only valid when used with theremove-buckets
command in which case the effect is to remove all buckets from the group.

first Operate on the first bucket present in the group.In the case of theinsert-buckets com-
mand the effect is to insert new bucets just before the first bucket already present in the
group; or to replace the buckets of the group if there are no buckets already present in the
group. In the case of theremove-buckets command the effect is to remove the first
bucket of the group; or do nothing if there are no buckets present in the group.

last Operate on the last bucket present in the group. In the case of theinsert-buckets com-
mand the effect is to insert new bucets just after the last bucket already present in the
group; or to replace the buckets of the group if there are no buckets already present in the
group. In the case of theremove-buckets command the effect is to remove the last
bucket of the group; or do nothing if there are no buckets present in the group.

If id is an integer then it should correspond to thebucket_id of a bucket present in the group.In
case of theinsert-buckets command the effect is to insert buckets just before the bucket in the
group whosebucket_id is id. In case of theiremove-buckets command the effect is to remove
the in the group whosebucket_id is id. It is an error if there is no bucket persent group in whose
bucket_id is id.

selection_method=method
The selection method used to select a bucket for a select group. This is a string of 1 to 15 bytes in
length known to lower layers. This field is optional foradd−group, add−groupsandmod−group
commands on groups of typeselect. Prohibited otherwise. The default value is the empty string.

This option will use a Netronome OpenFlow extension which is only supported when using Open
vSwitch 2.4 and later with OpenFlow 1.5 and later.

Open vSwitch 2.4.90 30

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

selection_method_param=param
64-bit integer parameter to the selection method selected by theselection_methodfield. The
parameter’s use is defined by the lower-layer that implements theselection_method. It is optional
if the selection_methodfield is specified as a non-empty string. Prohibited otherwise. The default
value is zero.

This option will use a Netronome OpenFlow extension which is only supported when using Open
vSwitch 2.4 and later with OpenFlow 1.5 and later.

fields=param
The field parameters to selection method selected by theselection_methodfield. Thesyntax is
described inFlow Syntax with the additional restrictions that if a value is provided it is treated as
a wildcard mask and wildcard masks following a slash are prohibited. The pre-requisites of fields
must be provided by any flows that output to the group. The use of the fields is defined by the
lower-layer that implements theselection_method. They are optional if theselection_method
field is specified as a non-empty string. Prohibited otherwise. The default is no fields.

This option will use a Netronome OpenFlow extension which is only supported when using Open
vSwitch 2.4 and later with OpenFlow 1.5 and later.

bucket=buck et_parameters
Theadd-group, add-groupsandmod-group commands require at least one bucket field. Bucket
fields must appear after all other fields.Multiple bucket fields to specify multiple buckets. The
order in which buckets are specified corresponds to their order in the group. If the type of the
group is "indirect" then only one group may be specified.buck et_parametersconsists of a list of
field=valueassignments, separated by commas or white space followed by a comma-separated list
of actions. The fields forbuck et_parametersare:

bucket_id=id
The 32-bit integer group id of the bucket. Values greater than 0xffffff 00 are reserved.
This field was added in Open vSwitch 2.4 to conform with the OpenFlow 1.5 specifica-
tion. It is not supported when earlier versions of OpenFlow are used. Open vSwitch will
automatically allocate bucket ids when they are not specified.

actions=[action][,action...]
The syntax of actions are identical to theactions=field described inFlow Syntax above.
Specyfingactions= is optional, any unknown bucket parameter will be interpreted as an
action.

weight=value
The relative weight of the bucket as an integer. This may be used by the switch during
bucket select for groups whosetype is select.

watch_port=port
Port used to determine liveness of group. This or thewatch_group field is required for
groups whosetype is ff or fast_failover .

watch_group=group_id
Group identifier of group used to determine liveness of group. This or thewatch_port
field is required for groups whosetype is ff or fast_failover .

Meter Syntax
The meter table commands accept an argument that describes a meter. Such meter descriptions comprise a
seriesfield=value assignments, separated by commas or white space.(Embedding spaces into a group
description normally requires quoting to prevent the shell from breaking the description into multiple argu-
ments.). Unless noted otherwise only the last instance of each field is honoured.

Open vSwitch 2.4.90 31

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

meter=id
The integer meter id of the meter. When this field is specified indel-meter, dump-meter, or
meter-stats, the keyword "all" may be used to designate all meters. This field is required, exept
for meter-stats, which dumps all stats when this field is not specified.

kbps
pktps The unit for the meter band rate parameters, either kilobits per second, or packets per second,

respectively. One of these must be specified. The burst size unit corresponds to the rate unit by
dropping the "per second", i.e., burst is in units of kilobits or packets, respectively.

burst Specify burst size for all bands, or none of them, if this flag is not given.

stats Collect meter and band statistics.

bands=band_parameters
The add-meter and mod-meter commands require at least one band specification. Bands must
appear after all other fields.

type=type
The type of the meter band.This keyword starts a new band specification. Each band
specifies a rate above which the band is to take some action. The action depends on the
band type. If multiple bands’ rate is exceeded, then the band with the highest rate among
the exceeded bands is selected. The following keywords designate the allowed meter
band types:

drop Drop packets exceeding the band’s rate limit.

The otherband_parametersare:

rate=value
The relative rate limit for this band, in kilobits per second or packets per second, depend-
ing on the meter flags defined above.

burst_size=size
The maximum burst allowed for the band.If pktps is specified, thensize is a packet
count, otherwise it is in kilobits.If unspecified, the switch is free to select some reason-
able value depending on its configuration.

OPTIONS
−−strict

Uses strict matching when running flow modification commands.

−−bundle
Execute flow mods as an OpenFlow 1.4 atomic bundle transaction.

• Within a bundle, all flow mods are processed in the order they appear and as a single
atomic transaction, meaning that if one of them fails, the whole transaction fails and none
of the changes are made to theswitch’s flow table, and that each given datapath packet
traversing the OpenFlow tables sees the flow tables either as before the transaction, or
after all the flow mods in the bundle have been successfully applied.

• The beginning and the end of the flow table modification commands in a bundle are
delimited with OpenFlow 1.4 bundle control messages, which makes it possible to stream
the included commands without explicit OpenFlow barriers, which are otherwise used
after each flow table modification command. This may make large modifications execute
faster as a bundle.

• Bundles require OpenFlow 1.4 or higher. An explicit -O OpenFlow14 option is not
needed, but you may need to enable OpenFlow 1.4 support for OVS by setting the

Open vSwitch 2.4.90 32

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

OVSDBprotocolscolumn in thebridgetable.

−O [version[,version]...]
−−protocols=[version[,version]...]

Sets the OpenFlow protocol versions that are allowed when establishing an OpenFlow session.

The following versions are considered to be ready for general use.These protocol versions are
enabled by default:

• OpenFlow10, for OpenFlow 1.0.

Support for the following protocol versions is provided for testing and development purposes.
They are not enabled by default:

• OpenFlow11, for OpenFlow 1.1.

• OpenFlow12, for OpenFlow 1.2.

• OpenFlow13, for OpenFlow 1.3.

−F format[,format...]
−−flow−format=format[,format...]

ovs−ofctl supports the following individual flow formats, any number of which may be listed as
format:

OpenFlow10−table_id
This is the standard OpenFlow 1.0 flow format. All OpenFlow switches and all versions
of Open vSwitch support this flow format.

OpenFlow10+table_id
This is the standard OpenFlow 1.0 flow format plus a Nicira extension that allows
ovs−ofctl to specify the flow table in which a particular flow should be placed.Open
vSwitch 1.2 and later supports this flow format.

NXM−table_id (Nicira Extended Match)
This Nicira extension to OpenFlow is flexible and extensible. Itsupports all of the Nicira
flow extensions, such astun_id and registers. OpenvSwitch 1.1 and later supports this
flow format.

NXM+table_id (Nicira Extended Match)
This combines Nicira Extended match with the ability to place a flow in a specific table.
Open vSwitch 1.2 and later supports this flow format.

OXM-OpenFlow12
OXM-OpenFlow13
OXM-OpenFlow14

These are the standard OXM (OpenFlow Extensible Match) flow format in OpenFlow
1.2, 1.3, and 1.4, respectively.

ovs−ofctl also supports the following abbreviations for collections of flow formats:

any Any supported flow format.

OpenFlow10
OpenFlow10−table_idor OpenFlow10+table_id.

NXM NXM−table_id or NXM+table_id .

OXM OXM-OpenFlow12, OXM-OpenFlow13, or OXM-OpenFlow14.

For commands that modify the flow table,ovs−ofctl by default negotiates the most widely sup-
ported flow format that supports the flows being added.For commands that query the flow table,
ovs−ofctl by default uses the most advanced format supported by the switch.

This option, whereformat is a comma-separated list of one or more of the formats listed above,
limits ovs−ofctl’s choice of flow format. Ifa command cannot work as requested using one of the

Open vSwitch 2.4.90 33

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

specified flow formats,ovs−ofctl will report a fatal error.

−P format
−−packet−in−format=format

ovs−ofctl supports the following packet_in formats, in order of increasing capability:

openflow10
This is the standard OpenFlow 1.0 packet in format. It should be supported by all Open-
Flow switches.

nxm (Nicira Extended Match)
This packet_in format includes flow metadata encoded using the NXM format.

Usually, ovs−ofctl prefers thenxm packet_in format, but will allow the switch to choose its
default if nxm is unsupported.When format is one of the formats listed in the above table,
ovs−ofctl will insist on the selected format.If the switch does not support the requested format,
ovs−ofctl will report a fatal error. This option only affects themonitor command.

−−timestamp
Print a timestamp before each received packet. Thisoption only affects themonitor , snoop, and
ofp−parse−pcapcommands.

−m
−−more

Increases the verbosity of OpenFlow messages printed and logged byovs−ofctl commands. Spec-
ify this option more than once to increase verbosity further.

−−sort[=field]
−−rsort[=field]

Display output sorted by flow field in ascending (−−sort) or descending (−−rsort) order, where
field is any of the fields that are allowed for matching orpriority to sort by priority. Whenfield is
omitted, the output is sorted by priority. Specify these options multiple times to sort by multiple
fields.

Any giv en flow will not necessarily specify a value for a given field. Thisrequires special treate-
ment:

• A flow that does not specify any part of a field that is used for sorting is sorted after all
the flows that do specify the field.For example,−−sort=tcp_src will sort all the flows
that specify a TCP source port in ascending order, followed by the flows that do not spec-
ify a TCP source port at all.

• A flow that only specifies some bits in a field is sorted as if the wildcarded bits were zero.
For example,−−sort=nw_srcwould sort a flow that specifiesnw_src=192.168.0.0/24the
same asnw_src=192.168.0.0.

These options currently affect onlydump−flows output. Thefollowing options are valid on
POSIX based platforms.

−−pidfile[=pidfile]
Causes a file (by default,ovs−ofctl.pid) to be created indicating the PID of the running process.If
the pidfile argument is not specified, or if it does not begin with /, then it is created in
/var/run/openvswitch.

If −−pidfile is not specified, no pidfile is created.

−−overwrite−pidfile
By default, when−−pidfile is specified and the specified pidfile already exists and is locked by a
running process,ovs−ofctl refuses to start.Specify −−overwrite−pidfile to cause it to instead
overwrite the pidfile.

When−−pidfile is not specified, this option has no effect.

Open vSwitch 2.4.90 34

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

−−detach
Causesovs−ofctl to detach itself from the foreground session and run as a background process.
ovs−ofctl detaches only when executing themonitor or snoopcommands.

−−monitor
Creates an additional process to monitor theovs−ofctl daemon. Ifthe daemon dies due to a signal
that indicates a programming error (SIGABRT , SIGALRM , SIGBUS, SIGFPE, SIGILL , SIG-
PIPE, SIGSEGV, SIGXCPU, or SIGXFSZ) then the monitor process starts a new copy of it. If
the daemon dies or exits for another reason, the monitor process exits.

This option is normally used with−−detach, but it also functions without it.

−−no−chdir
By default, when−−detach is specified,ovs−ofctl changes its current working directory to the
root directory after it detaches. Otherwise, invoking ovs−ofctl from a carelessly chosen directory
would prevent the administrator from unmounting the file system that holds that directory.

Specifying−−no−chdir suppresses this behavior, preventing ovs−ofctl from changing its current
working directory. This may be useful for collecting core files, since it is common behavior to
write core dumps into the current working directory and the root directory is not a good directory
to use.

This option has no effect when−−detachis not specified.

−−user Causesovs−ofctl to run as a non root user specified in "user:group", thus dropping all root privi-
leges. Short forms "user" and ":group" are also allowed, with current user or group are assumed
respectively. Only daemons started by the root user accepts this argument.

On Linux, daemons will be granted CAP_IPC_LOCK and CAP_NET_BIND_SERVICES before
dropping root privileges. Daemons interact with datapath, such as ovs-vswitchd, will be granted
two additional capabilities, namely CAP_NET_ADMIN and CAP_NET_RAW.

On Windows, this option is not currently supported. For security reasons, specifying this option
will cause the daemon process not to start.

−−unixctl=socket
Sets the name of the control socket on whichovs−ofctl listens for runtime management commands
(seeRUNTIME MAN AGEMENT COMMANDS , below). If socket does not begin with/, it is
interpreted as relative to /var/run/openvswitch. If −−unixctl is not used at all, the default socket
is /var/run/openvswitch/ovs−ofctl.pid.ctl, wherepid is ovs−ofctl’s process ID.

On Windows, uses a kernel chosen TCP port on the localhost to listen for runtime management
commands. Thekernel chosen TCP port value is written in a file whose absolute path is pointed
by socket. If −−unixctl is not used at all, the file is created asovs−ofctl.ctl in the configured
OVS_RUNDIRdirectory.

Specifyingnonefor socket disables the control socket feature.

Public Key Infrastructur e Options
−p privkey.pem
−−pri vate−key=privkey.pem

Specifies a PEM file containing the private key used asovs−ofctl’s identity for outgoing SSL con-
nections.

−c cert.pem
−−certificate=cert.pem

Specifies a PEM file containing a certificate that certifies the private key specified on−p or −−pri-
vate−key to be trustworthy. The certificate must be signed by the certificate authority (CA) that
the peer in SSL connections will use to verify it.

−C cacert.pem

Open vSwitch 2.4.90 35

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

−−ca−cert=cacert.pem
Specifies a PEM file containing the CA certificate thatovs−ofctl should use to verify certificates
presented to it by SSL peers.(This may be the same certificate that SSL peers use to verify the
certificate specified on−c or −−certificate, or it may be a different one, depending on the PKI
design in use.)

−C none
−−ca−cert=none

Disables verification of certificates presented by SSL peers. This introduces a security risk,
because it means that certificates cannot be verified to be those of known trusted hosts.

−v[spec]
−−verbose=[spec]

Sets logging levels. Without any spec, sets the log level for every module and destination todbg.
Otherwise,specis a list of words separated by spaces or commas or colons, up to one from each
category below:

• A valid module name, as displayed by thevlog/list command onovs−appctl(8), limits
the log level change to the specified module.

• syslog, console, or file, to limit the log level change to only to the system log, to the con-
sole, or to a file, respectively.

On Windows platform,syslog is accepted as a word and is only useful along with the
−−syslog−targetoption (the word has no effect otherwise).

• off, emer, err , warn, info, or dbg, to control the log level. Messagesof the given sev er-
ity or higher will be logged, and messages of lower severity will be filtered out. off filters
out all messages. Seeovs−appctl(8) for a definition of each log level.

Case is not significant withinspec.

Regardless of the log levels set forfile, logging to a file will not take place unless−−log−file is
also specified (see below).

For compatibility with older versions of OVS,any is accepted as a word but has no effect.

−v
−−verbose

Sets the maximum logging verbosity level, equivalent to−−verbose=dbg.

−vPATTERN:destination:pattern
−−verbose=PATTERN:destination:pattern

Sets the log pattern fordestinationto pattern. Refer toovs−appctl(8) for a description of the valid
syntax forpattern.

−vFACILITY: facility
−−verbose=FACILITY: facility

Sets the RFC5424 facility of the log message.facility can be one ofkern , user, mail, daemon,
auth, syslog, lpr , news, uucp, clock, ftp , ntp, audit, alert, clock2, local0, local1, local2, local3,
local4, local5, local6or local7. If this option is not specified,daemonis used as the default for the
local system syslog andlocal0 is used while sending a message to the target provided via the
−−syslog−targetoption.

−−log−file[=file]
Enables logging to a file.If file is specified, then it is used as the exact name for the log file.The
default log file name used iffile is omitted is/var/log/openvswitch/ovs−ofctl.log.

−−syslog−target=host:port
Send syslog messages to UDPport on host, in addition to the system syslog.Thehostmust be a
numerical IP address, not a hostname.

Open vSwitch 2.4.90 36

ovs−ofctl(8) OpenvSwitch Manual ovs−ofctl(8)

−−syslog−method=method
Specifymethodhow syslog messages should be sent to syslog daemon.Following forms are sup-
ported:

• libc, use libc syslog() function. Thisis the default behavior. Downside of using this
options is that libc adds fixed prefix to every message before it is actually sent to the sys-
log daemon over /dev/logUNIX domain socket.

• unix:file, use UNIX domain socket directly. It is possible to specify arbitrary message
format with this option.However, rsyslogd 8.9and older versions use hard coded parser
function anyway that limits UNIX domain socket use. If you want to use arbitrary mes-
sage format with olderrsyslogd versions, then use UDP socket to localhost IP address
instead.

• udp:ip:port, use UDP socket. With this method it is possible to use arbitrary message
format also with olderrsyslogd. When sending syslog messages over UDP socket extra
precaution needs to be taken into account, for example, syslog daemon needs to be con-
figured to listen on the specified UDP port, accidental iptables rules could be interfering
with local syslog traffic and there are some security considerations that apply to UDP
sockets, but do not apply to UNIX domain sockets.

−h
−−help Prints a brief help message to the console.

−V
−−version

Prints version information to the console.

RUNTIME MAN AGEMENT COMMANDS
ovs−appctl(8) can send commands to a runningovs−ofctl process. Thesupported commands are listed
below.

exit Causesovs−ofctl to gracefully terminate.This command applies only when executing themoni-
tor or snoopcommands.

ofctl/set−output−file file
Causes all subsequent output to go tofile instead of stderr. This command applies only when exe-
cuting themonitor or snoopcommands.

ofctl/sendofmsg...
Sends eachofmsg, specified as a sequence of hex digits that express an OpenFlow message, on the
OpenFlow connection. Thiscommand is useful only when executing themonitor command.

ofctl/barrier
Sends an OpenFlow barrier request on the OpenFlow connection and waits for a reply. This com-
mand is useful only for themonitor command.

EXAMPLES
The following examples assume thatovs−vswitchdhas a bridge namedbr0 configured.

ovs−ofctl dump−tables br0
Prints out the switch’s table stats. (This is more interesting after some traffic has passed through.)

ovs−ofctl dump−flows br0
Prints the flow entries in the switch.

SEE ALSO
ovs−appctl(8), ovs−vswitchd(8) ovs−vswitchd.conf.db(8)

Open vSwitch 2.4.90 37

