
ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NAME
ovs−fields − protocol header fields supported by Open vSwitch

SYNOPSIS
TUNNEL FIELDS

The fields in this group relate to tunnels, which Open vSwitch supports in several forms (GRE, VXLAN,
and so on). Most of these fields do appear in the wire format of a packet, so they are data fields from that
point of view, but they are metadata from an OpenFlow flow table point of view because they do not appear
in packets that are forwarded to the controller or to ordinary (non-tunnel) output ports.

Open vSwitch supports a spectrum of usage models for mapping tunnels to OpenFlow ports:

‘‘ Port-based’’ tunnels
In this model, an OpenFlow port represents one tunnel: it matches a particular type of
tunnel traffic between two IP endpoints, with a particular tunnel key (if keys are in use).
In this situation,MFF_IN_PORT suffices to distinguish one tunnel from another, so the
tunnel header fields have little importance for OpenFlow processing. (They are still pop-
ulated and may be used if it is convenient.) Thetunnel header fields play no role in send-
ing packets out such an OpenFlow port, either, because the OpenFlow port itself fully
specifies the tunnel headers.

The following Open vSwitch commands create a bridgebr−int , add port tap0 to the
bridge as OpenFlow port 1, establish a port-based GRE tunnel between the local host and
remote IP 192.168.1.1 using GRE key 5001 as OpenFlow port 2, and arranges to forward
all traffic fromtap0 to the tunnel and vice versa:

ovs−vsctl add−br br−int
ovs−vsctl add−port br−int tap0 −− set interface tap0 ofport_request=1
ovs−vsctl add−port br−int gre0 −−

set interface gre0 ofport_request=2 type=gre \
options:remote_ip=192.168.1.1 options:key=5001

ovs−ofctl add−flow br−int in_port=1,actions=2
ovs−ofctl add−flow br−int in_port=2,actions=1

‘‘ Flow-based’’ tunnels
In this model, one OpenFlow port represents all possible tunnels of a given type with an
endpoint on the current host, for example, all GRE tunnels. In this situation,
MFF_IN_PORT only indicates that traffic was received on the particular kind of tunnel.
This is where the tunnel header fields are most important: they allow the OpenFlow tables
to discriminate among tunnels based on their IP endpoints or keys. Tunnel header fields
also determine the IP endpoints and keys of packets sent out such a tunnel port.

The following Open vSwitch commands create a bridgebr−int , add port tap0 to the
bridge as OpenFlow port 1, establish a flow-based GRE tunnel port 3, and arranges to for-
ward all traffic fromtap0 to remote IP 192.168.1.1 over a GRE tunnel with key 5001 and
vice versa:

ovs−vsctl add−br br−int
ovs−vsctl add−port br−int tap0 −− set interface tap0 ofport_request=1
ovs−vsctl add−port br−int allgre −−

set interface gre0 ofport_request=2 type=gre \
options:remote_ip=flow options:key=flow

ovs−ofctl add−flow br−int \
’in_port=1 actions=set_tunnel:5001,set_field:192.168.1.1−>tun_dst,3’

ovs−ofctl add−flow br−int ’in_port=3,tun_src=192.168.1.1,tun_id=5001 actions=1’

Open vSwitch UNKNOWN 1



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Mixed models.
One may define both flow-based and port-based tunnels at the same time.For example, it
is valid and possibly useful to create and configure bothgre0 and allgre tunnel ports
described above.

Traffic is attributed on ingress to the most specific matching tunnel.For example,gre0 is
more specific thanallgre. Therefore, if both exist, thengre0 will be the input port for
any GRE traffic received from 192.168.1.1 with key 5001.

On egress, traffic may be directed to any appropriate tunnel port. If bothgre0 andallgre
are configured as already described, then the actions2 and set_tun-
nel:5001,set_field:192.168.1.1−>tun_dst,3send the same tunnel traffic.

Intermediate models.
Ports may be configured as partially flow-based. For example, one may define an Open-
Flow port that represents tunnels between a pair of endpoints but leaves the flow table to
discriminate on the flow key.

ovs-vswitchd.conf.db(5) describes all the details of tunnel configuration.

These fields do not have any prerequisites, which means that a flow may match on any or all of them, in any
combination.

These fields are zeros for packets that did not arrive on a tunnel.

Tunnel ID Field
Name: tun_id (akatunnel_id)
Width: 64bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via OpenFlow 1.3 code point)
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_TUNNEL_ID (0x80004c08), introduced in OpenFlow 1.3

NXM_NX_TUN_ID (0x00012008), introduced in Open vSwitch 1.1

Many kinds of tunnels support a tunnel ID:

• VXLAN has a 24-bit virtual network identifier (VNI).

• LISP has a 24-bit instance ID.

• GRE has an optional 32-bit key.

• GRE64 (a non-standard protocol) has a 64-bit ID constructed from the 32-bit GRE key and
32-bit GRE sequence number.

When a packet is received from a tunnel, this field holds the tunnel ID in its least significant bits, zero-
extended to fit.This field is zero if the tunnel does not support an ID, or if no ID is in use for a tunnel type
that has an optional ID, or if an ID of zero received, or if the packet was not received over a tunnel.

When a packet is output to a tunnel port, the tunnel configuration determines whether the tunnel ID is taken
from this field or bound to a fixed value. Seethe earlier description of ‘‘port-based’’ and ‘‘flow-based’’ tun-
nels for more information.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16 32

0x6558

GRE

dst src type
48 48 16

Ethernet

. . .

Open vSwitch UNKNOWN 2



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Tunnel IPv4 Source Field
Name: tun_src
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_TUN_IPV4_SRC (0x00013e04), introduced in Open vSwitch 2.0

When a packet is received from a tunnel, this field is the source address in the outer IP header of the tun-
neled packet. Thisfield is zero if the packet was not received over a tunnel.

When a packet is output to a flow-based tunnel port, this field influences the IPv4 source address used to
send the packet. If it is zero, then the kernel chooses an appropriate IP address based using the routing ta-
ble.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16 32

0x6558

GRE

dst src type
48 48 16

Ethernet

. . .

Tunnel IPv4 Destination Field
Name: tun_dst
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_TUN_IPV4_DST (0x00014004), introduced in Open vSwitch 2.0

When a packet is received from a tunnel, this field is the destination address in the outer IP header of the
tunneled packet. Thisfield is zero if the packet was not received over a tunnel.

When a packet is output to a flow-based tunnel port, this field specifies the destination to which the tunnel
packet is sent.

The following diagram shows the origin of this field in a typical keyed GRE tunnel:

dst src type
48 48 16

0x800

Ethernet

. . . proto src dst
8

47

32 32
IPv4

. . . type key
16 16 32

0x6558

GRE

dst src type
48 48 16

Ethernet

. . .

Open vSwitch UNKNOWN 3



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

METAD AT A FIELDS
These fields relate to the origin or treatment of a packet, but they are not extracted from the packet data
itself.

Input Port Field
Name: in_port
Width: 16bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_OF_IN_PORT (0x00000002), introduced in Open vSwitch 1.1

The OpenFlow port on which the packet being processed arrived. Thisis a 16-bit field that holds an Open-
Flow 1.0 port number. For receiving a packet, the only values that appear in this field are:

1 through0xfeff (65,279), inclusive.
Conventional OpenFlow port numbers.

OFPP_LOCAL (0xfffe or 65,534).
The ‘‘local’’ port, which in Open vSwitch is always named the same as the bridge itself.
This represents a connection between the switch and the local TCP/IP stack.This port is
where an IP address is most commonly configured on an Open vSwitch switch.

OpenFlow does not require a switch to have a local port, but all existing versions of Open
vSwitch have always included a local port.(Some future version of Open vSwitch might
be able to optionally omit the local port, if someone submits code to implement such a
feature.)

OFPP_NONE(0xffff or 65,535).
OFPP_CONTROLLER (0xfffd or 65,533).

When a controller injects a packet into an OpenFlow switch with a ‘‘packet-out’’ request,
it can specify one of these input ports to indicate that the packet was generated internally
rather than having been received on some port.

OpenFlow 1.0 specifiedOFPP_NONE for this purpose. Despite that, some controllers
used OFPP_CONTROLLER , and some switches only acceptedOFPP_CON-
TROLLER , so OpenFlow 1.0.2 required support for both ports.OpenFlow 1.1 and later
were more clearly drafted to allow only OFPP_CONTROLLER . For maximum com-
patibility, Open vSwitch allows both ports with all OpenFlow versions.

Values not mentioned above will never appear when receiving a packet, including the following notable val-
ues:

0 Zero is not a valid OpenFlow port number.

OFPP_MAX (0xff00 or 65,280).
This value has only been clearly specified as a valid port number as of OpenFlow 1.3.3.
Before that, its status was unclear, and so Open vSwitch has never allowed OFPP_MAX
to be used as a port number, so packets will never be received on this port. (Other Open-
Flow switches, of course, might use it.)

OFPP_IN_PORT (0xfff8 or 65,528)
OFPP_TABLE (0xfff9 or 65,529)
OFPP_NORMAL (0xfffa or 65,530)

Open vSwitch UNKNOWN 4



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OFPP_FLOOD (0xfffb or 65,531)
OFPP_ALL (0xfffc or 65,532)

These port numbers are used only in output actions and never appear as input ports.

Values that will never appear when receiving a packet may still be matched against in the flow table. There
are still circumstances in which those flows can be matched:

• Theresubmit Nicira extension action allows a flow table lookup with an arbitrary input port.

• An action that modifies the input port field (see below), such as e.g.load or set_field, fol-
lowed by an action or instruction that performs another flow table lookup, such asresubmit
or goto_table.

This field is heavily used for matching in OpenFlow tables, but for packet egress, it has only very limited
roles:

• OpenFlow requires suppressing output actions toMFF_IN_PORT . That is, the following
two flows both drop all packets that arrive on port 1:

in_port=1,actions=1
in_port=1,actions=drop

(This behavior is occasionally useful for flooding to a subset of ports.Specifying
actions=1,2,3,4, for example, outputs to ports 1, 2, 3, and 4, omitting the input port.)

• OpenFlow has a special portOFPP_IN_PORT (with value 0xfff8) that outputs to the input
port. For example, in a switch that has four ports numbered 1 through 4,
actions=1,2,3,4,in_portoutputs to ports 1, 2, 3, and 4, including the input port.

Because the input port field has so little influence on packet processing, it does not ordinarily make sense to
modify the input port field. The field is writable only to support the occasional use case where the input
port’s roles in packet egress, described above, become troublesome. For example,
actions=load:0−>NXM_OF_IN_PORT[],output:123will output to port 123 regardless of whether it is in
the input port. If the input port is important, then one may save and restore it on the stack:

actions=push:NXM_OF_IN_PORT[],load:0−>NXM_OF_IN_PORT[],output:123,pop:NXM_OF_IN_PORT[]

The ability to modify the input port is an Open vSwitch extension to OpenFlow.

Modifying the input port does not prevent or frustrate specifying an input port in theresubmit action,
becauseresubmit only (optionally) changes the in_port used forresubmit’s flow table lookup. It does not
otherwise affect the input port.

OXM I nput Port Field
Name: in_port_oxm
Width: 32bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: no
Code Points: OXM_OF_IN_PORT (0x80000004), introduced in OpenFlow 1.2

OpenFlow 1.1 and later use a 32-bit port number, so this field supplies a 32-bit view of the input port.Cur-
rent versions of Open vSwitch support only a 16-bit range of ports:

• OpenFlow 1.0 ports0x0000to 0xfeff, inclusive, map to OpenFlow 1.1 port numbers with the
same values.

Open vSwitch UNKNOWN 5



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

• OpenFlow 1.0 ports0xff00 to 0xffff , inclusive, map to OpenFlow 1.1 port numbers0xffffff00
to 0xffffffff .

• OpenFlow 1.1 ports0x0000ff00to 0xfffffeff are not mapped and not supported.

MFF_IN_PORT andMFF_IN_PORT_OXM are two views of the same information, so all of the com-
ments onMFF_IN_PORT apply to MFF_IN_PORT_OXM too. Modifying MFF_IN_PORT changes
MFF_IN_PORT_OXM , and vice versa.

SettingMFF_IN_PORT_OXM to an unsupported value yields unspecified behavior.

Output Queue Field
Name: skb_priority
Width: 32bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: no
OpenFlow 1.3: no
NXM: no
Code Points: none

This field influences how packets in the flow will be queued, for quality of service (QoS) purposes, when
they egress the switch. Its range of meaningful values, and their meanings, varies greatly from one Open-
Flow implementation to another. Even within a single implementation, there is no guarantee that all Open-
Flow ports have the same queues configured or that all OpenFlow ports in an implementation can be config-
ured the same way queue-wise.

Configuring queues on OpenFlow is not well standardized. On Linux, Open vSwitch supports queue con-
figuration via OVSDB, specifically theQoS andQueue tables (seeovs−vswitchd.conf.db(5)for details).
Ports of Open vSwitch to other platforms might require queue configuration through some separate proto-
col (such as a CLI).Even on Linux, Open vSwitch exposes only a fraction of the kernel’s queuing features
through OVSDB, so advanced or unusual uses might require use of separate utilities (e.g.tc). OpenFlow
switches other than Open vSwitch might use OF-CONFIG or any of the configuration methods mentioned
above. Finally, some OpenFlow switches have a fixed number of fixed-function queues (e.g. eight queues
with strictly defined priorities) and others do not support any control over queuing.

The only output queue that all OpenFlow implementations must support is zero, to identify a default queue,
whose properties are implementation-defined. Outputting a packet to a queue that does not exist on the out-
put port yields unpredictable behavior: among the possibilities are that the packet might be dropped or
transmitted with a very high or very low priority.

OpenFlow 1.0 only allowed output queues to be specified as part of an ‘‘enqueue’’ action that specified both
a queue and an output port. That is, OpenFlow 1.0 treats the queue as an argument to an action, not as a
field.

OpenFlow switch and controller implementers soon realized that separating the decisions for output queue
and output port increased flexibility , so OpenFlow 1.1 added an action to set the output queue. This model
was carried forward, without change, through OpenFlow 1.4.

Open vSwitch implements the native queuing model of each OpenFlow version it supports. Open vSwitch
also includes an extension for setting the output queue as an action in OpenFlow 1.0.

When a packet ingresses into an OpenFlow switch, the output queue is ordinarily set to 0, indicating the
default queue.However, Open vSwitch supports various ways to forward a packet from one OpenFlow
switch to another within a single host.In these cases, Open vSwitch maintains the output queue across the
forwarding step.For example:

• A hop across a Open vSwitch ‘‘patch port’’ (which does not actually involve queuing) pre-
serves the output queue.

Open vSwitch UNKNOWN 6



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

• When a flow sets the output queue then outputs to an OpenFlow tunnel port, the encapsulation
preserves the output queue. If the kernel TCP/IP stack routes the encapsulated packet directly
to a physical interface, then that output honors the output queue.Alternatively, if the kernel
routes the encapsulated packet to another Open vSwitch bridge, then the output queue set pre-
viously becomes the initial output queue on ingress to the second bridge and will thus be used
for further output actions (unless overridden by a new ‘‘set queue’’ action).

(This description reflects the current behavior of Open vSwitch on Linux. This behavior
relies on details of the Linux TCP/IP stack. It could be difficult to make ports to other operat-
ing systems behave the same way.)

Open vSwitch implements the output queue as a field, but does not currently expose it through OXM or
NXM for matching purposes.If this turns out to be a useful feature, it could be implemented in future ver-
sions.

Packet Mark Field
Name: pkt_mark
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_PKT_MARK (0x00014204), introduced in Open vSwitch 2.0

Packet mark comes to Open vSwitch from the Linux kernel, in which thesk_buff data structure that repre-
sents a packet contains a 32-bit member namedskb_mark. The value ofskb_mark propagates along with
the packet it accompanies wherever the packet goes in the kernel. Ithas no predefined semantics but vari-
ous kernel-user interfaces can set and match on it, which makes it suitable for ‘‘marking’’ packets at one
point in their handling and then acting on the mark later. With iptables, for example, one can mark some
traffic specially at ingress and then handle that traffic differently at egress based on the marked value.

Packet mark is an attempt at a generalization of theskb_mark concept beyond Linux, at least through more
generic naming.Like MFF_SKB_PRIORITY , packet mark is preserved across forwarding steps within a
machine. Unlike MFF_SKB_PRIORITY , packet mark has no direct effect on packet forwarding: the
value set in packet mark does not matter unless some later OpenFlow table or switch matches on packet
mark, or unless the packet passes through some other kernel subsystem that has been configured to interpret
packet mark in specific ways, e.g. throughiptablesconfiguration mentioned above.

Preserving packet mark across kernel forwarding steps relies heavily on kernel support, which ports to non-
Linux operating systems may not have. Reg ardless of operating system support, Open vSwitch supports
packet mark within a single bridge and across patch ports.

The value of packet mark when a packet ingresses into the first Open vSwich bridge is typically zero, but it
could be nonzero if its value was previously set by some kernel subsystem.

Open vSwitch UNKNOWN 7



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

REGISTER FIELDS
These fields give an OpenFlow switch space for temporary storage while the pipeline is running.Whereas
metadata fields can have a meaningful initial value and can persist across some hops across OpenFlow
switches, registers are always initially 0 and their values never persist across inter-switch hops.

OpenFlow Metadata Field
Name: metadata
Width: 64bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_METAD AT A (0x80000408), introduced in OpenFlow 1.2

This field is the only standardized OpenFlow register field. Because ASIC-based switches can carry a lim-
ited number of user-defined bits through their pipelines, OpenFlow allows switches to support writing and
masking only an implementation-defined subset of bits, even no bits at all. The Open vSwitch software
switch always supports all 64 bits, but of course an Open vSwitch port to an ASIC would have the same
restriction as the ASIC itself.

This field has an OXM code point, but OpenFlow 1.1 through 1.4 allow it to be modified only with a spe-
cialized instruction, not with a ‘‘set-field’’ action. Asof this writing, OpenFlow 1.5 seems likely to remove
this restriction. Open vSwitch does not enforce this restriction, regardless of OpenFlow version.

Register 0 Field
Name: reg0
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG0 (0x00010004), introduced in Open vSwitch 1.1

This is the first of several Open vSwitch registers, all of which have the same properties.Open vSwitch 1.1
introduced registers 0, 1, 2, and 3, version 1.3 added register 4, and version 1.7 added registers 5, 6, and 7.

Register 1 Field
Name: reg1
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG1 (0x00010204), introduced in Open vSwitch 1.1

Open vSwitch UNKNOWN 8



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Register 2 Field
Name: reg2
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG2 (0x00010404), introduced in Open vSwitch 1.1

Register 3 Field
Name: reg3
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG3 (0x00010604), introduced in Open vSwitch 1.1

Register 4 Field
Name: reg4
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG4 (0x00010804), introduced in Open vSwitch 1.3

Register 5 Field
Name: reg5
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG5 (0x00010a04), introduced in Open vSwitch 1.7

Register 6 Field
Name: reg6
Width: 32bits
Masking: arbitrarybitwise masks

Open vSwitch UNKNOWN 9



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG6 (0x00010c04), introduced in Open vSwitch 1.7

Register 7 Field
Name: reg7
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_REG7 (0x00010e04), introduced in Open vSwitch 1.7

LAYER 2 (ETHERNET) FIELDS
Ethernet is the only layer−2 protocol that Open vSwitch supports.As with most software, Open vSwitch
and OpenFlow reg ard an Ethernet frame to begin with the 14-byte header and end with the final byte of the
payload; that is, the frame check sequence is not considered part of the frame.

Ethernet Source Field
Name: eth_src(akadl_src)
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.8)
Code Points: OXM_OF_ETH_SRC (0x80000806), introduced in OpenFlow 1.2

NXM_OF_ETH_SRC (0x00000406), introduced in Open vSwitch 1.1

The Ethernet source address:

dst src type
48 48 16

Ethernet

. . .

Ethernet Destination Field
Name: eth_dst(akadl_dst)
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes

Open vSwitch UNKNOWN 10



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

NXM: yes(only partially maskable before Open vSwitch 1.8, see notes)
Code Points: OXM_OF_ETH_DST (0x80000606), introduced in OpenFlow 1.2

NXM_OF_ETH_DST (0x00000206), introduced in Open vSwitch 1.1

The Ethernet destination address:

dst src type
48 48 16

Ethernet

. . .

Ethernet Type Field
Name: eth_type(akadl_type)
Width: 16bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read-only
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ETH_TYPE (0x80000a02), introduced in OpenFlow 1.2

NXM_OF_ETH_TYPE (0x00000602), introduced in Open vSwitch 1.1

The most commonly seen Ethernet frames today use a format called ‘‘Ethernet II,’’ i n which the last two
bytes of the Ethernet header specify the Ethertype.For such a frame, this field is copied from those bytes
of the header, like so:

dst src type
48 48 16

≥0x600

Ethernet

. . .

Every Ethernet type has a value 0x600 (1,536) or greater. When the last two bytes of the Ethernet header
have a value too small to be an Ethernet type, then the value found there is the total length of the frame in
bytes, excluding the Ethernet header. An 802.2 LLC header typically follows the Ethernet header. Open-
Flow and Open vSwitch only support LLC headers with DSAP and SSAP0xaa and control byte0x03,
which indicate that a SNAP header follows the LLC header. In turn, OpenFlow and Open vSwitch only
support a SNAP header with organization0x000000. In such a case, this field is copied from the type field
in the SNAP header, like this:

dst src length
48 48 16

<0x600

Ethernet

DSAP SSAP cntl
8 8 8

0xaa 0xaa 0x03

LLC

org type
24 16

0x000000 ≥0x600

SNAP

. . .

When an 802.1Q header is inserted after the Ethernet source and destination, this field is populated with the
encapsulated Ethertype, not the 802.1Q Ethertype.With an Ethernet II inner frame, the result looks like
this:

dst src
48 48

Ethernet

TPID TCI
16 16

0x8100

802.1Q

type
16

≥0x600

Ethertype

. . .

LLC and SNAP encapsulation look like this with an 802.1Q header:

dst src
48 48

Ethernet

TPID TCI
16 16

0x8100

802.1Q

length
16

<0x600

Ethertype

DSAP SSAP cntl
8 8 8

0xaa 0xaa 0x03

LLC

org type
24 16

0x000000 ≥0x600

SNAP

. . .

When a packet does’t match any of the header formats described above, Open vSwitch and OpenFlow set

Open vSwitch UNKNOWN 11



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

this field to0x5ff (OFP_DL_TYPE_NOT_ETH_TYPE).

Open vSwitch UNKNOWN 12



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

VLAN FIELDS
VLAN TCI Field

Name: vlan_tci
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_OF_VLAN_TCI (0x00000802), introduced in Open vSwitch 1.1

OpenFlow 1.0 VLAN ID Field
Name: dl_vlan
Width: 16bits (only the least-significant 12 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: none

OpenFlow 1.0 VLAN Priority Field
Name: dl_vlan_pcp
Width: 8bits (only the least-significant 3 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: none

OpenFlow 1.2+ VLAN ID Field
Name: vlan_vid
Width: 16bits (only the least-significant 12 bits may be nonzero)
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_VLAN_VID (0x80000c02), introduced in OpenFlow 1.2

OpenFlow 1.2+ VLAN Priority Field
Name: vlan_pcp
Width: 8bits (only the least-significant 3 bits may be nonzero)

Open vSwitch UNKNOWN 13



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Masking: notmaskable
Prerequisites: MFP_VLAN_VID
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_VLAN_PCP (0x80000e01), introduced in OpenFlow 1.2

LAYER 2.5 (MPLS) FIELDS
MPLS Label Field

Name: mpls_label
Width: 32bits (only the least-significant 20 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_MPLS
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_MPLS_LABEL (0x80004404), introduced in OpenFlow 1.2

MPLS Traffic Class Field
Name: mpls_tc
Width: 8bits (only the least-significant 3 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_MPLS
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_MPLS_TC (0x80004601), introduced in OpenFlow 1.2

MPLS Bottom of Stack Field
Name: mpls_bos
Width: 8bits (only the least-significant 1 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_MPLS
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via OpenFlow 1.3 code point)
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_MPLS_BOS (0x80004801), introduced in OpenFlow 1.3

LAYER 3 FIELDS
IPv4 Source Address Field

Name: ip_src (akanw_src)
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_IPV4

Open vSwitch UNKNOWN 14



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Access: read/write
OpenFlow 1.0: yes(CIDR masks only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(CIDR masks only before Open vSwitch 1.8)
Code Points: OXM_OF_IPV4_SRC (0x80001604), introduced in OpenFlow 1.2

NXM_OF_IP_SRC (0x00000e04), introduced in Open vSwitch 1.1

IPv4 Destination Address Field
Name: ip_dst (akanw_dst)
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_IPV4
Access: read/write
OpenFlow 1.0: yes(CIDR masks only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(CIDR masks only before Open vSwitch 1.8)
Code Points: OXM_OF_IPV4_DST (0x80001804), introduced in OpenFlow 1.2

NXM_OF_IP_DST (0x00001004), introduced in Open vSwitch 1.1

IPv6 Source Address Field
Name: ipv6_src
Width: 128bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_IPV6
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(CIDR masks only before Open vSwitch 1.8)
Code Points: OXM_OF_IPV6_SRC (0x80003410), introduced in OpenFlow 1.2

NXM_NX_IPV6_SRC (0x00012610), introduced in Open vSwitch 1.1

IPv6 Destination Address Field
Name: ipv6_dst
Width: 128bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_IPV6
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(CIDR masks only before Open vSwitch 1.8)
Code Points: OXM_OF_IPV6_DST (0x80003610), introduced in OpenFlow 1.2

NXM_NX_IPV6_DST (0x00012810), introduced in Open vSwitch 1.1

IPv6 Flow Label Field
Name: ipv6_label
Width: 32bits (only the least-significant 20 bits may be nonzero)
Masking: arbitrarybitwise masks
Prerequisites: MFP_IPV6

Open vSwitch UNKNOWN 15



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 2.1)
Code Points: OXM_OF_IPV6_FLABEL (0x80003804), introduced in OpenFlow 1.2

NXM_NX_IPV6_LABEL (0x00013604), introduced in Open vSwitch 1.4

IPv4/v6 Protocol Field
Name: nw_proto (akaip_proto)
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_IP_ANY
Access: read-only
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_IP_PROT O (0x80001401), introduced in OpenFlow 1.2

NXM_OF_IP_PROT O (0x00000c01), introduced in Open vSwitch 1.1

IPv4/v6 DSCP (Bits 2-7) Field
Name: nw_tos
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_IP_ANY
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_OF_IP_TOS (0x00000a01), introduced in Open vSwitch 1.1

IPv4/v6 DSCP (Bits 0-5) Field
Name: ip_dscp
Width: 8bits (only the least-significant 6 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_IP_ANY
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_IP_DSCP(0x80001001), introduced in OpenFlow 1.2

IPv4/v6 ECN Field
Name: nw_ecn(akaip_ecn)
Width: 8bits (only the least-significant 2 bits may be nonzero)
Masking: notmaskable
Prerequisites: MFP_IP_ANY
Access: read/write
OpenFlow 1.0: no

Open vSwitch UNKNOWN 16



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_IP_ECN (0x80001201), introduced in OpenFlow 1.2

NXM_NX_IP_ECN (0x00013801), introduced in Open vSwitch 1.4

IPv4/v6 TTL/Hop Limit Field
Name: nw_ttl
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_IP_ANY
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_IP_TTL (0x00013a01), introduced in Open vSwitch 1.4

IPv4/v6 Fragment Bitmask Field
Name: ip_frag
Width: 8bits (only the least-significant 2 bits may be nonzero)
Masking: arbitrarybitwise masks
Prerequisites: MFP_IP_ANY
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_IP_FRAG (0x00013401), introduced in Open vSwitch 1.3

ARP Opcode Field
Name: arp_op
Width: 16bits
Masking: notmaskable
Prerequisites: MFP_ARP
Access: read/write
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ARP_OP (0x80002a02), introduced in OpenFlow 1.2

NXM_OF_ARP_OP (0x00001e02), introduced in Open vSwitch 1.1

ARP Source IPv4 Address Field
Name: arp_spa
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ARP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes

Open vSwitch UNKNOWN 17



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ARP_SPA(0x80002c04), introduced in OpenFlow 1.2

NXM_OF_ARP_SPA (0x00002004), introduced in Open vSwitch 1.1

ARP Target IPv4 Address Field
Name: arp_tpa
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ARP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ARP_TPA (0x80002e04), introduced in OpenFlow 1.2

NXM_OF_ARP_TPA (0x00002204), introduced in Open vSwitch 1.1

ARP Source Ethernet Address Field
Name: arp_sha
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ARP
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.9)
Code Points: OXM_OF_ARP_SHA (0x80003006), introduced in OpenFlow 1.2

NXM_NX_ARP_SHA (0x00012206), introduced in Open vSwitch 1.1

ARP Target Ethernet Address Field
Name: arp_tha
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ARP
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.9)
Code Points: OXM_OF_ARP_THA (0x80003206), introduced in OpenFlow 1.2

NXM_NX_ARP_THA (0x00012406), introduced in Open vSwitch 1.1

LAYER 4 FIELDS
TCP Source Port Field

Name: tcp_src (akatp_src)
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_TCP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)

Open vSwitch UNKNOWN 18



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.6)
Code Points: OXM_OF_TCP_SRC(0x80001a02), introduced in OpenFlow 1.2

NXM_OF_TCP_SRC (0x00001202), introduced in Open vSwitch 1.1

TCP Destination Port Field
Name: tcp_dst (akatp_dst)
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_TCP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.6)
Code Points: OXM_OF_TCP_DST (0x80001c02), introduced in OpenFlow 1.2

NXM_OF_TCP_DST (0x00001402), introduced in Open vSwitch 1.1

TCP Flags Field
Name: tcp_flags
Width: 16bits (only the least-significant 12 bits may be nonzero)
Masking: arbitrarybitwise masks
Prerequisites: MFP_TCP
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes(via NXM code point)
OpenFlow 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_TCP_FLAGS (0x00014402), introduced in Open vSwitch 2.1

UDP Source Port Field
Name: udp_src
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_UDP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.6)
Code Points: OXM_OF_UDP_SRC(0x80001e02), introduced in OpenFlow 1.2

NXM_OF_UDP_SRC(0x00001602), introduced in Open vSwitch 1.1

UDP Destination Port Field
Name: udp_dst
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_UDP
Access: read/write
OpenFlow 1.0: yes(exact match only)
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes

Open vSwitch UNKNOWN 19



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.6)
Code Points: OXM_OF_UDP_DST(0x80002002), introduced in OpenFlow 1.2

NXM_OF_UDP_DST (0x00001802), introduced in Open vSwitch 1.1

SCTP Source Port Field
Name: sctp_src
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_SCTP
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_SCTP_SRC(0x80002202), introduced in OpenFlow 1.2

SCTP Destination Port Field
Name: sctp_dst
Width: 16bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_SCTP
Access: read/write
OpenFlow 1.0: no
OpenFlow 1.1: yes(exact match only)
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(via OXM code point)
Code Points: OXM_OF_SCTP_DST(0x80002402), introduced in OpenFlow 1.2

ICMPv4 Type Field
Name: icmp_type
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_ICMPV4
Access: read-only
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ICMPV4_TYPE (0x80002601), introduced in OpenFlow 1.2

NXM_OF_ICMP_TYPE (0x00001a01), introduced in Open vSwitch 1.1

ICMPv4 Code Field
Name: icmp_code
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_ICMPV4
Access: read-only
OpenFlow 1.0: yes
OpenFlow 1.1: yes
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes

Open vSwitch UNKNOWN 20



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Code Points: OXM_OF_ICMPV4_CODE (0x80002801), introduced in OpenFlow 1.2
NXM_OF_ICMP_CODE (0x00001c01), introduced in Open vSwitch 1.1

ICMPv6 Type Field
Name: icmpv6_type
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_ICMPV6
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ICMPV6_TYPE (0x80003a01), introduced in OpenFlow 1.2

NXM_NX_ICMPV6_TYPE (0x00012a01), introduced in Open vSwitch 1.1

ICMPv6 Code Field
Name: icmpv6_code
Width: 8bits
Masking: notmaskable
Prerequisites: MFP_ICMPV6
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes
Code Points: OXM_OF_ICMPV6_CODE (0x80003c01), introduced in OpenFlow 1.2

NXM_NX_ICMPV6_CODE (0x00012c01), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target IPv6 Field
Name: nd_target
Width: 128bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ND
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(CIDR masks only before Open vSwitch 1.8)
Code Points: OXM_OF_IPV6_ND_TARGET (0x80003e10), introduced in OpenFlow 1.2

NXM_NX_ND_TARGET (0x00012e10), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Source Ethernet Address Field
Name: nd_sll
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ND_SOLICIT
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.9)

Open vSwitch UNKNOWN 21



ovs−fields(7) OpenvSwitch Manual ovs−fields(7)

Code Points: OXM_OF_IPV6_ND_SLL (0x80004006), introduced in OpenFlow 1.2
NXM_NX_ND_SLL (0x00013006), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target Ethernet Address Field
Name: nd_tll
Width: 48bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_ND_ADVERT
Access: read-only
OpenFlow 1.0: no
OpenFlow 1.1: no
OpenFlow 1.2: yes
OpenFlow 1.3: yes
NXM: yes(maskable since Open vSwitch 1.9)
Code Points: OXM_OF_IPV6_ND_TLL (0x80004206), introduced in OpenFlow 1.2

NXM_NX_ND_TLL (0x00013206), introduced in Open vSwitch 1.1

Open vSwitch UNKNOWN 22


