ovs—fields(7) OpenSwitch Manual ovs—fields(7)

NAME
ovs—fields — protocol header fields supported by Open vSwitch

SYNOPSIS

TUNNEL FIELDS
The fields in this group relate to tunnels, which Open vSwitch supportseralstorms (GRE, VXLAN,
and so on). Most of these fields do appear in the wire format of a packety soetllata fields from that
point of view, but they are metadata from an Openfaldlow table point of viev because thedo not appear
in packets that are forwarded to the controller or to ordinary (non-tunnel) output ports.

Open vSwitch supports a spectrum of usage models for mapping tunnels to @paorEo

“ Port-basedtunnels
In this model, an OpenRlport represents one tunnel: it matches a particular type of
tunnel traffic between twlP endpoints, with a particular tunneék (f keys ae in use).
In this situationMFF_IN_PORT sufices to distinguish one tunnel from anotrsr he
tunnel header fields e little importance for OpenFlo processing. (Theare still pop-
ulated and may be used if it is @enient.) Thetunnel header fields play no role in send-
ing packets out such an Openklport, either because the Openkioport itself fully
specifies the tunnel headers.

The folloving Open vSwitch commands create a britbgeint, add porttapO to the
bridge as OpenFw port 1, establish a port-based GRE tunnel between the local host and
remote IP 192.168.1.1 using GREyk301 as OpenFe port 2, and arranges to foand

all traffic fromtap0 to the tunnel and vice versa:

ovs—vsctl add—br br-int
ovs-vsctl add—port br-int tap0 —— set interface tap0 ofport_request=1
ovs-vsctl add—port br-int gre0 ——
set interface gre0 ofport_request=2 type=gr\
options:remote_ip=192.168.1.1 options:key=5001
ovs—ofctl add—flov br-int in_port=1,actions=2
ovs—ofctl add—flov br—int in_port=2,actions=1

“ Flow-based'tunnels
In this model, one OpenRloport represents all possible tunnels of eegitype with an
endpoint on the current host, forxaenple, all GRE tunnels. In this situation,
MFF_IN_PORT only indicates that traffic was rewed on the particular kind of tunnel.
This is where the tunnel header fields are most importantaliosv the OpenFlar tables
to discriminate among tunnels based on their IP endpointsysr Kunnel header fields
also determine the IP endpoints aregkof packets sent out such a tunnel port.

The folloving Open vSwitch commands create a britbgeint, add porttapO to the
bridge as OpenHw port 1, establish a flow-based GRE tunnel port 3, and arranges to for
ward all traffic fromtapO to remote IP 192.168.1. e a GRE tunnel with ky 301 and

vice versa:

ovs-vsctl add-br br-int
ovs-vsctl add—port br-int tap0 —— set interface tap0 ofport_request=1
ovs-vsctl add—port br-int allgre —

set interface gre0 ofport_request=2 type=gr\

options:remote_ip=flon options:key=flow

ovs—ofctl add—flov br=int \

'in_port=1 actions=set_tunnel:5001,set_field:192.168.1.1->tun_dst,3’
ovs—ofctl add—flon br=int 'in_port=3,tun_src=192.168.1.1,tun_id=5001 actions=1’

Open vSwitch UNKNQVN 1

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

Mixed models.
One may define both flebased and port-based tunnels at the same fimeexample, it
is valid and possibly useful to create and configure otd and allgre tunnel ports
described abee.

Traffic is attributed on ingress to the most specific matching turigelexample,greQis
more specific thamllgre. Therefore, if both exist, thegreO will be the input port for
ary GRE traffic receied from 192.168.1.1 withéy 5001.

On egress, traffic may be directed ty appropriate tunnel port. If bothreO andallgre
are configured as already described, then the acti@sand set tun-
nel:5001,set field:192.168.1.1->tun_dstsgnd the same tunnel traffic.

Intermediate models.
Ports may be configured as partiallyflbased. Br example, one may define an Open-
Flow port that represents tunnels between a pair of endpoints et libe flav table to
discriminate on the flg key.

ovs-vswitchd.conf.db(5) describes all the details of tunnel configuration.

These fields do not ki@ any perequisites, which means that axflmay match on anor dl of them, in ay
combination.

These fields are zeros for packets that did noteaai a unnel.

Tunnel ID Field
Name: tun_id (akatunnel_id)
Width: 64bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write

OpenFlav1.0: no

OpenFlav1.1: no

OpenFlav 1.2: yes(via OpenFlav 1.3 code point)

OpenFlav 1.3: yes

NXM: yes

Code Points: OXM_OF_TUNNEL_ID (0x80004c08), introduced in Openfld.3
NXM_NX_TUN_ID (0x00012008), introduced in Open vSwitch 1.1

Many kinds of tunnels support a tunnel ID:
* VXLAN has a 24-bit virtual network identifier (VNI).
* LISP has a 24-bit instance ID.
* GRE has an optional 32-biek

* GRE®64 (a non-standard protocol) has a 64-bit ID constructed from the 32-bit &Rk
32-bit GRE sequence number.

When a paclt is recaied from a tunnel, this field holds the tunnel ID in its least significant bits, zero-
extended to fit. This field is zero if the tunnel does not support an ID, or if no ID is in use for a tunnel type
that has an optional ID, or if an ID of zero reed; or if the packet was not reced over a tunnel.

When a packet is output to a tunnel port, the tunnel configuration determines whether the tunneetD is tak
from this field or bound to a f&x \alue. Seé¢he earlier description ofport-based’and “flow-based’ tun-
nels for more information.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Ethernet IPv4 GRE Ethernet
48 48 16 8 32 32 16 16 32 48 48 16
] dst | src | type‘] |proto| src | dst ‘] |type| key |] dst | src | type‘
0x800 47 0x6558

Open vSwitch UNKNQVN 2

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

Tunnel IPv4 Source Field

Name: tun_src

Width: 32bits

Masking: arbitranybitwise masks
Prerequisites: MFP_NONE
Access: read/write

OpenFlav1.0: no
OpenFlav1.1: no

OpenFlav 1.2: yes(via NXM code point)

OpenFlav 1.3: yes(via NXM code point)

NXM: yes

Code Points: NXM_NX_TUN_IPV4_SRC (0x00013e04), introduced in Open vSwitch 2.0

When a packet is resed from a tunnel, this field is the source address in the outer IP header of the tun-
neled packt. Thisfield is zero if the packet was not reai over a tunnel.

When a pao#t is output to a flow-based tunnel port, this field influences the IPv4 source address used to
send the paak. Ifit is zero, then the kernel chooses an appropriate IP address based using the routing ta-
ble.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Ethernet IPv4 GRE Ethernet
48 48 16 8 32 32 16 16 37 48 48 1
] dst | src | type‘] |proto| src | dst ‘] |type| key ‘] dst | src | type‘
0x800 47 0x6558
Tunnel IPv4 Destination Field
Name: tun_dst
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write
OpenFlav 1.0: no
OpenFlav1.1: no
OpenFlav 1.2: yes(via NXM code point)
OpenFlav 1.3: yes(via NXM code point)
NXM: yes
Code Points: NXM_NX_TUN_IPV4_DST (0x00014004), introduced in Open vSwitch 2.0

When a packet is reaed from a tunnel, this field is the destination address in the outer IP header of the
tunneled paost. Thisfield is zero if the packet was not racei over a tunnel.

When a padét is output to a flow-based tunnel port, this field specifies the destination to which the tunnel
packet is sent.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Ethernet IPv4 GRE Ethernet
48 48 16 8 32 32 16 16 32 48 48 16
] dst | src | type‘] |proto| src | dst |] |type| key ‘] dst | src | type‘
800 47 0x6558

Open vSwitch

UNKNOVN 3

ovs—fields(7)

METAD ATA FIELDS

OpenSwitch Manual ovs—fields(7)

These fields relate to the origin or treatment of a @laddut thg are not extracted from the packet data

itself.

Input Port Field
Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

in_port
16bits
notmaskable
MFP_NONE
read/write
yes
yes
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_OF_IN_PORT (0x00000002), introduced in Open vSwitch 1.1

The OpenFlor port on which the packet being processedvedti Thisis a 16-bit field that holds an Open-
Flow 1.0 port number For receiving a packet, the only values that appear in this field are:

1 throughOxfeff (65,279), inclusie.

Corventional OpenFler port numbers.

OFPP_LOCAL (Oxfffe or 65,534).

The ‘local” port, which in Open vSwitch iswhys named the same as the bridge itself.
This represents a connection between the switch and the local TCP/IP&tackort is
where an IP address is most commonly configured on an Open vSwitch switch.

OpenFlav does not require a switch toveaa bcal port, but all existing versions of Open
vSwitch hae dways included a local port(Some future version of Open vSwitch might

be able to optionally omit the local port, if someone submits code to implement such a
feature.)

OFPP_NONE (Oxffff or 65,535).
OFPP_CONTROLLER (0Oxfffd or 65,533).

When a controller injects a packet into an Opewrwitch with a ‘packet-out’ request,
it can specify one of these input ports to indicate that the packet was generated internally
rather than having been reas on sme port.

OpenFlav 1.0 specifiedOFPP_NONE for this purpose. Despite that, some controllers
used OFPP_CONTROLLER, and some switches only acceptedFPP_CON-
TROLLER , so (penFlav 1.0.2 required support for both port®penFlav 1.1 and later
were more clearly drafted to aloonly OFPP_CONTROLLER. For maximum com-
patibility, Open vSwitch allows both ports with all Openklgersions.

Values not mentioned alse will never appear when receiving a packet, including the following notadlle v

ues:
0

Zero is not a valid OpenRioport number.

OFPP_MAX (0xff00 or 65,280).

This value has only been clearly specified aslal\port number as of Openkdal.3.3.

Before that, its status was uncleard so Open vSwitch hasvee alowed OFPP_MAX

to be used as a port numpso mackets will never be receved on tis port. (Other Open-
Flow switches, of course, might use it.)

OFPP_IN_PORT (0xfff8 or 65,528)
OFPP_TABLE (0xfff9 or 65,529)
OFPP_NORMAL (0xfffa or 65,530)

Open vSwitch

UNKNOVN 4

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

OFPP_FLOOD (0xfffb or 65,531)
OFPP_ALL (Oxfffc or 65,532)
These port numbers are used only in output actions asmd aggear as input ports.

Values that will nger appear when receiving a patkmay still be matched against in thenfliable. There
are still circumstances in which those flows can be matched:

» Theresubmit Nicira extension action allows adable lookup with an arbitrary input port.

* An action that modifies the input port field (see below), such adoad or set_field fol-
lowed by an action or instruction that performs anothev thble lookup, such agsubmit
or goto_table

This field is heavily used for matching in Openklables, but for packet egress, it has ordyyvimited
roles:

* OpenFlav requires suppressing output actionsMBF _IN_PORT. That is, the follaving
two flows both drop all packets that arel an port 1:

in_port=1,actions=1
in_port=1,actions=drop

(This behavior is occasionally useful for flooding to a subset of poBigecifying
actions=1,2,3,4for example, outputs to ports 1, 2, 3, and 4, omitting the input port.)

* OpenFlav has a special po®FPP_IN_PORT (with value 0xff8) that outputs to the input
port. For example, in a switch that has four ports numbered 1 through 4,
actions=1,2,3,4,in_porbutputs to ports 1, 2, 3, and 4, including the input port.

Because the input port field has so little influence ongigmocessing, it does not ordinarily reaense to

modify the input port field. The field is writable only to support the occasional use case where the input
port's rles in packet egress, described w&#o become troublesome. For example,
actions=load:0->NXM_OF_IN_PORT[],output:123 will output to port 123 rgardless of whether it is in

the input port. If the input port is important, then one may sad restore it on the stack:

actions=push:NXM_OF_IN_PORT][],load:0->NXM_OF_IN_PORT[],output:123,pop:NXM_OF_IN_PORT]]

The ability to modify the input port is an Open vSwitch extension to OpenFlo

Modifying the input port does not pent or frustrate specifying an input port in thesubmit action,
becauseesubmit only (optionally) changes the in_port used iesubmit’s flow table lookup. It does not
otherwise affect the input port.

OXM | nput Port Field

Name: in_port_oxm
Width: 32bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read/write

OpenFlav 1.0: no

OpenFlav 1.1: yes

OpenFlav 1.2: yes

OpenFlav 1.3: yes

NXM: no

Code Points: OXM_OF_IN_PORT (0x80000004), introduced in Openttld.2

OpenFlav 1.1 and later use a 32-bit port numis this field supplies a 32-bit weof the input port.Cur-
rent versions of Open vSwitch support only a 16-bit range of ports:

* OpenFlav 1.0 portsOx0000to Oxfeff, inclusive, map to OpenFle 1.1 port numbers with the
same values.

Open vSwitch UNKNQVN 5

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

* OpenFlav 1.0 portsOxffO0 to Oxffff, inclusive, map to OpenFhy 1.1 port number®xffffff00
to OXfFffffff .

* OpenFlav 1.1 portsOx0000ffO0to Oxfffffeff are not mapped and not supported.

MFF_IN_PORT andMFF_IN_PORT_OXM are tw views of the same information, so all of the com-
ments onMFF_IN_PORT apply to MFF_IN_PORT_OXM too. Modifying MFF_IN_PORT changes
MFF_IN_PORT_OXM, and vice versa.

SettingMFF_IN_PORT_OXM to an unsupported value yields unspecified behavior.
Output Queue Field

Name: skb_priority
Width: 32bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read-only

OpenFlav1.0: no
OpenFlav1.1: no
OpenFlav1.2: no
OpenFlav1.3: no
NXM: no
Code Points: none

This field influences he packets in the flar will be queued, for quality of service (QoS) purposes, when
they egress the switch. Its range of meaningfalues, and their meanings, varies greatly from one Open-
Flow implementation to anotheEven within a single implementation, there is no guarantee that all Open-
Flow ports hae the same queues configured or that all Opemiplarts in an implementation can be config-
ured the same way queue-wise.

Configuring queues on Openfalas not well standardized. On Linux, Open vSwitch supports queue con-
figuration via OVSDB, specifically th©oS and Queuetables (se@vs—vswitchd.conf.db(5)for details).

Ports of Open vSwitch to other platforms might require queue configuration through some separate proto-
col (such as a CLI)Even on Linux, Open vSwitch exposes only a fraction of #radds queuing features
through OVSDB, so advanced or unusual uses might require use of separate utilitte3. (©genFlov
switches other than Open vSwitch might use OF-CONFIG pioathe configuration methods mentioned
above. Finally, some OpenFle switches hae a fked number of fixed-function queues (e.g. eight queues
with strictly defined priorities) and others do not suppoyt@mtrol over queuing.

The only output queue that all Openklonplementations must support is zero, to identify aulefjueue,

whose properties are implementation-defined. Outputting a packet to a queue that does not exist on the out-
put port yields unpredictable befar: among the possibilities are that the packet might be dropped or
transmitted with a very high or verygpriority.

OpenFlav 1.0 only allowed output queues to be specified as part ¢drguieue’action that specified both
a queue and an output port. That is, OpemFIo0 treats the queue as agunent to an action, not as a
field.

OpenFlav switch and controller implementers soon realized that separating the decisions for output queue
and output port increasedxXibility, so QpenFlav 1.1 added an action to set the output queue. This model
was arried forward, without change, through Open¥ib4.

Open vSwitch implements the natiqueuing model of each OpenRlwersion it supports. Open vSwitch
also includes an extension for setting the output queue as an action in @p&eFlo

When a padt ingresses into an Openwiawitch, the output queue is ordinarily set to 0, indicating the
default queue.However, Open vSwitch supports various ways to forward a packet from one OpenFlo
switch to another within a single hosh these cases, Open vSwitch maintains the output queue across the
forwarding step.For example:

* A hop across a Open vSwitch “patch poftvhich does not actually welve queuing) pre-
serves the output queue.

Open vSwitch UNKNQVN 6

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

* When a flaov sets the output queue then outputs to an Op@ntelonel port, the encapsulation
preseres the output queue. If the kernel TCP/IP stack routes the encapsulated packet directly
to a plysical interface, then that output honors the output quélternatively, if the kernel
routes the encapsulated packet to another Open vSwitch bridge, then the output queue set pre-
viously becomes the initial output queue on ingress to the second bridge and will thus be used
for further output actions (unlessesridden by a n& ‘““‘set queué’action).

(This description reflects the current behavior of Open vSwitch on Linux. Thivibeha
relies on details of the Linux TCP/IP stack. It could be difficult toerakts to other operat-
ing systems belva the same way.)

Open vSwitch implements the output queue as a field, but does not currently expose it through OXM or
NXM for matching purposeslf this turns out to be a useful feature, it could be implemented in fudure v

sions.

Packet Mark Field
Name: pkt_mark
Width: 32bits
Masking: arbitrarybitwise masks
Prerequisites: MFP_NONE
Access: read/write

OpenFlav1.0: no

OpenFlav1.1: no

OpenFlav 1.2: yes(via NXM code point)

OpenFlav 1.3: yes(via NXM code point)

NXM: yes

Code Points: NXM_NX_PKT_MARK (0x00014204), introduced in Open vSwitch 2.0

Packet mark comes to Open vSwitch from the Linexrel, in which thesk_buff data structure that repre-
sents a packet contains a 32-bit member naskbdmark. The value okb_mark propagtes along with
the packet it accompanies whesethe packet goes in thestnel. Ithas no predefined semantics bativ
ous kernel-user interfaces can set and match on it, whicesngkuitable for‘fnarking” packets at one
point in their handling and then acting on the mark latith iptables, for example, one can mark some
traffic specially at ingress and then handle that traffic differently at egress based on the marked value.

Packet mark is an attempt at a generalization ofsttte_ mark concept beyond Linux, at least through more
generic namingLike MFF_SKB_PRIORITY , packet mark is preserved across forwarding steps within a
machine. Unlilke MFF_SKB_PRIORITY , packet mark has no direct effect on packet forwarding: the

value set in paackt mark does not matter unless some later Opentéble or switch matches on patk

mark, or unless the packet passes through some other kernel subsystem that has been configured to interpret
packet mark in specific ways, e.g. througfiables configuration mentioned abe

Preserving packet mark across kernel forwarding steps relies heavily on kernel support, which ports to non-
Linux operating systems may notvea Regadless of operating system support, Open vSwitch supports
packet mark within a single bridge and across patch ports.

The value of packet mark when a percingresses into the first Open vSwich bridge is typically zero, but it
could be nonzero if its value was previously set by some kernel subsystem.

Open vSwitch UNKNQVN 7

ovs—fields(7)

REGISTER FIELDS

OpenSwitch Manual ovs—fields(7)

These fields ge aan OpenFlav switch space for temporary storage while the pipeline is runridgereas
metadata fields can V& a neaningful initial value and can persist across some hops across QpenFlo
switches, registers arenadys initially O and their values wer persist across inter-switch hops.

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

OpenFlow M etadata Field

metadata

64bits

arbitrarybitwise masks
MFP_NONE

read/write

no

yes

yes

yes

yes(via OXM code point)

OXM_OF_METAD ATA (0x80000408), introduced in Openttld..2

This field is the only standardized Openklegster field. Because ASIC-based switches can carry a lim-
ited number of user-defined bits through their pipelines, Openéllows switches to support writing and
masking only an implementation-defined subset of bitap @o kits at all. The Open vSwitch sofare
switch aays supports all 64 bits, but of course an Open vSwitch port to an ASUE ware the same
restriction as the ASIC itself.

This field has an OXM code point, but Openilb.1 through 1.4 all it to be nodified only with a spe-
cialized instruction, not with &set-field” action. Asof this writing, OpenFlar 1.5 seems likely to renve
this restriction. Open vSwitch does not enforce this restrictigardiess of OpenFle version.

Register 0 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

reg0

32bits

arbitrarybitwise masks
MFP_NONE
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_REGO (0x00010004), introduced in Open vSwitch 1.1

This is the first of ageral Open vSwitch registers, all of whichveathe same propertieOpen vSwitch 1.1

introduced registers 0, 1, 2, and 3, version 1.3 added register 4, and version 1.7 added registers 5, 6, and 7.
Register 1 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Open vSwitch

regl
32bits
arbitrarybitwise masks
MFP_NONE
read/write
no
no
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_NX_REG1 (0x00010204), introduced in Open vSwitch 1.1

UNKNOVN 8

ovs—fields(7)

Register 2 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Register 3 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Register 4 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Register 5 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Register 6 Field

Name:
Width:
Masking:

Open vSwitch

OpenSwitch Manual

reg2

32bits

arbitranybitwise masks
MFP_NONE
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_REG2 (0x00010404), introduced in Open vSwitch 1.1

reg3

32bits

arbitranybitwise masks
MFP_NONE
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_REG3 (0x00010604), introduced in Open vSwitch 1.1

reg4

32bits

arbitrarybitwise masks
MFP_NONE
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_REG4 (0x00010804), introduced in Open vSwitch 1.3

regs

32bits

arbitrarybitwise masks
MFP_NONE
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_REG5 (0x00010a04), introduced in Open vSwitch 1.7

regb
32bits
arbitrarybitwise masks

UNKNGOVN

ovs—fields(7)

ovs—fields(7)

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Register 7 Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

OpenSwitch Manual ovs—fields(7)

MFP_NONE
read/write
no
no
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_NX_REG6 (0x00010c04), introduced in Open vSwitch 1.7

reg7
32bits
arbitranybitwise masks
MFP_NONE
read/write
no
no
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_NX_REG7 (0x00010e04), introduced in Open vSwitch 1.7

LAYER 2 (ETHERNET) FIELDS

Ethernet is the only layer—2 protocol that Open vSwitch suppédswith most software, Open vSwitch
and OpenFle regad an Ethernet frame to begin with the 14-byte header and end with the final byte of the
payload; that is, the frame check sequence is not considered part of the frame.

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Ethernet Source Field

eth_src(akadl_src)
48bits
arbitrarybitwise masks
MFP_NONE
read/write
yes(exact match only)
yes
yes
yes
yes (maskable since Open vSwitch 1.8)
OXM_OF_ETH_SRC (0x80000806), introduced in Openild.2
NXM_OF_ETH_SRC (0x00000406), introduced in Open vSwitch 1.1

The Ethernet source address:

Open vSwitch

Ethernet
48 48 1

] dst | src | type ‘ e
Ethernet Destination Field

Name: eth_dst(akadl_dst)

Width: 48bits

Masking: arbitranbitwise masks

Prerequisites: MFP_NONE

Access: read/write

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes

OpenFlav 1.2: yes

OpenFlav 1.3: yes

UNKNOVN 10

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

NXM: yes (only partially maskable before Open vSwitch 1.8, see notes)
Code Points: OXM_OF_ETH_DST (0x80000606), introduced in Openfald.2
NXM_OF_ETH_DST (0x00000206), introduced in Open vSwitch 1.1

The Ethernet destination address:

Ethernet

48 48 1

| dst | src | type ‘ e
Ethernet Type Field

Name: eth_type(akadl_type)
Width: 16bits
Masking: notmaskable
Prerequisites: MFP_NONE
Access: read-only

OpenFlav 1.0: yes

OpenFlav 1.1: yes

OpenFlav 1.2: yes

OpenFlav 1.3: yes

NXM: yes

Code Points: OXM_OF_ETH_TYPE (0x80000a02), introduced in Open#ld.2
NXM_OF_ETH_TYPE (0x00000602), introduced in Open vSwitch 1.1

The most commonly seen Ethernet frames today use a format datlestnet II7 i n which the last tw
bytes of the Ethernet header specify the Ethertyfme.such a frame, this field is copied from those bytes
of the headetike :

Ethernet
48 48 1
] dst | src | type] -

=0x600

Every Ethernet type has alue 0x600 (1,536) or greatéwhen the last ter bytes of the Ethernet header
have a alue too small to be an Ethernet type, then tiaesfound there is the total length of the frame in
bytes, &cluding the Ethernet headeAn 802.2 LLC header typically follows the Ethernet head@pen-
Flow and Open vSwitch only support LLC headers with DSAP and S&# and control byteOx03
which indicate that a SAP header follows the LLC headein turn, OpenFlav and Open vSwitch only
support a SNAP header withganizationOx000000 In such a case, this field is copied from the type field
in the SNAP headelike this:

Ethernet LLC SNAP
48 48 16 8 8 8 24 16
] dst | src |Iengtﬁ]DSAP|SSAP| cntl ‘] og |[type] -

<0x600 Oxaa Oxaa 0x03 0x000000 =0x600

When an 802.1Q header is inserted after the Ethernet source and destination, this field is populated with the
encapsulated Ethertype, not the 802.1Q Ethertyfgh an Ethernet Il inner frame, the result looks lik

this:
Ethernet 802.1 Ethertype
48 48 ~16 ?6’ <1—6XID
dst src \]TP|D| TCI \ | type]| -
0x8100 >0x600
LLC and SNAP encapsulation look ¢ikhis with an 802.1Q header:
Ethernet 802.1 Ethertype LLC SNAP
~ 48 48~ T16 ?6’ <1—6XID ~8 8 8 T~ 24 16
dst src ‘ ’TPID| TCl ‘ ’Iength‘ ’DSAP|SSAP| cntl ‘ ’ org | type|
0x8100 <0x600 Oxaa Oxaa 0x03 0x000000 =0x600

When a packet dodgghatch ay of the header formats described @ydOpen vSwitch and OpenRloset

Open vSwitch UNKNQVN 11

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

this field toOx5ff (OFP_DL_TYPE_NOT_ETH_TYPE).

Open vSwitch UNKNQVN 12

ovs—fields(7)

VLAN FIELDS
VLAN TCI Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:

Open vSwitch

OpenSwitch Manual

vlan_tci
16bits
arbitranybitwise masks
MFP_NONE
read/write
yes(exact match only)
yes(exact match only)
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_OF_VLAN_TCI (0x00000802), introduced in Open vSwitch 1.1

OpenFlow 1.0 VLAN ID Field

di_vlan

16bits (only the least-significant 12 bits may be nonzero)
notmaskable
MFP_NONE
read/write

yes

yes

yes

yes

yes
none

OpenFlow 1.0 VLAN Priority Field

dl_vlan_pcp
8bits (only the least-significant 3 bits may be nonzero)
notmaskable
MFP_NONE
read/write
yes
yes
yes
yes
yes
none

OpenFlow 1.2+ VLAN ID Field

vian_vid
16bits (only the least-significant 12 bits may be nonzero)
arbitranybitwise masks
MFP_NONE
read/write
yes(exact match only)
yes(exact match only)
yes
yes
yes(via OXM code point)
OXM_OF_VLAN_VID (0x80000c02), introduced in Opend.2

OpenFlow 1.2+ VLAN Priority Field

vlan_pcp
8bits (only the least-significant 3 bits may be nonzero)

UNKNOVN

ovs—fields(7)

13

ovs—fields(7)

Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

LAYER 3 FIELDS
IPv4 Source Address Field

Name:
Width:
Masking:

Prerequisites:

Open vSwitch

OpenSwitch Manual

notmaskable
MFP_VLAN_VID
read/write
yes
yes
yes
yes
yes(via OXM code point)
OXM_OF_VLAN_PCP (0x80000e01), introduced in Open#ld.2

LAYER 2.5 (MPLS) FIELDS
MPLS Label Field

mpls_label
32bits (only the least-significant 20 bits may be nonzero)
notmaskable
MFP_MPLS
read/write
no
yes
yes
yes
yes(via OXM code point)
OXM_OF_MPLS_LABEL (0x80004404), introduced in Openf#d.2

MPLS Traffic Class Field

mpls_tc
8bits (only the least-significant 3 bits may be nonzero)
notmaskable
MFP_MPLS
read/write
no
yes
yes
yes
yes(via OXM code point)
OXM_OF_MPLS_TC (0x80004601), introduced in Openftld.2

MPLS Bottom of Stack Field

mpls_bos
8bits (only the least-significant 1 bits may be nonzero)
notmaskable
MFP_MPLS
read-only
no
no
yes(via OpenFlav 1.3 code point)
yes
yes(via OXM code point)
OXM_OF_MPLS BOS (0x80004801), introduced in Openfd.3

ip_src (akanw_src)

32bits

arbitrarybitwise masks
MFP_IPV4

UNKNGOVN

ovs—fields(7)

14

ovs—fields(7)

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Open vSwitch

OpenSwitch Manual

read/write
yes(CIDR masks only)
yes
yes
yes
yes (CIDR masks only before Open vSwitch 1.8)
OXM_OF_IPV4_SRC (0x80001604), introduced in Openfid..2
NXM_OF_IP_SRC (0x00000e04), introduced in Open vSwitch 1.1

IPv4 Destination Address Field

ip_dst (akanw_dsf)
32bits
arbitrarybitwise masks
MFP_IPV4
read/write
yes(CIDR masks only)
yes
yes
yes
yes (CIDR masks only before Open vSwitch 1.8)
OXM_OF_IPV4_DST (0x80001804), introduced in Openftld.2
NXM_OF_IP_DST (0x00001004), introduced in Open vSwitch 1.1

IPv6 Source Address Field

ipv6_src
128hits
arbitrarybitwise masks
MFP_IPV6
read/write
no
no
yes
yes
yes (CIDR masks only before Open vSwitch 1.8)
OXM_OF_IPV6_SRC (0x80003410), introduced in Openfid.2
NXM_NX_IPV6_SRC (0x00012610), introduced in Open vSwitch 1.1

IPv6 Destination Address Field

ipv6_dst
128hits
arbitranybitwise masks
MFP_IPV6
read/write
no
no
yes
yes
yes (CIDR masks only before Open vSwitch 1.8)
OXM_OF_IPV6_DST (0x80003610), introduced in Openftld.2
NXM_NX_IPV6_DST (0x00012810), introduced in Open vSwitch 1.1

IPv6 Flow Label Field

ipv6_label
32bits (only the least-significant 20 bits may be nonzero)
arbitrarybitwise masks

MFP_IPV6

UNKNGOVN

ovs—fields(7)

15

ovs—fields(7)

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

IPv4/v6 ECN Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:

Open vSwitch

OpenSwitch Manual

read-only
no
no
yes
yes
yes (maskable since Open vSwitch 2.1)
OXM_OF_IPV6_FLABEL (0x80003804), introduced in Openttld.2
NXM_NX_IPV6_LABEL (0x00013604), introduced in Open vSwitch 1.4

IPv4/v6 Protocol Field

nw_proto (akaip_proto)
8bits
notmaskable
MFP_IP_ANY
read-only
yes
yes
yes
yes
yes
OXM_OF_IP_PROTO (0x80001401), introduced in Openf#ld.2
NXM_OF_IP_PROTO (0x00000c01), introduced in Open vSwitch 1.1

IPv4/v6 DSCP (Bits 2-7) Field

nw_tos

8bits

notmaskable
MFP_IP_ANY
read/write

yes

yes

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_OF_IP_TOS (0x00000a01), introduced in Open vSwitch 1.1

IPv4/v6 DSCP (Bits 0-5) Field

ip_dscp
8bits (only the least-significant 6 bits may be nonzero)
notmaskable
MFP_IP_ANY
read/write
yes
yes
yes
yes
yes(via OXM code point)
OXM_OF_IP_DSCP(0x80001001), introduced in Openftld.2

nw_ecn(akaip_ecn
8bits (only the least-significant 2 bits may be nonzero)
notmaskable
MFP_IP_ANY
read/write
no

UNKNOVN

ovs—fields(7)

16

ovs—fields(7)

OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

ARP Opcode Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:

Open vSwitch

OpenSwitch Manual

no
yes

yes

yes

OXM_OF_IP_ECN (0x80001201), introduced in Opentld.2
NXM_NX_IP_ECN (0x00013801), introduced in Open vSwitch 1.4

IPv4/v6 TTL/Hop Limit Field

nw_ttl

8bits

notmaskable
MFP_IP_ANY
read/write

no

no

yes(via NXM code point)

yes(via NXM code point)

yes

NXM_NX_IP_TTL (0x00013a01), introduced in Open vSwitch 1.4

IPv4/v6 Fragment Bitmask Field

ip_frag
8bits (only the least-significant 2 bits may be nonzero)
arbitrarybitwise masks
MFP_IP_ANY
read-only
no
no
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_NX_IP_FRAG (0x00013401), introduced in Open vSwitch 1.3

arp_op
16bits
notmaskable
MFP_ARP
read/write
yes
yes
yes
yes
yes
OXM_OF_ARP_OP (0x80002a02), introduced in Open#ld.2
NXM_OF_ARP_OP (0x00001e02), introduced in Open vSwitch 1.1

ARP Source IPv4 Address Field

arp_spa

32bits

arbitrarybitwise masks
MFP_ARP
read/write

yes(exact match only)

yes

yes

UNKNOVN

ovs—fields(7)

17

ovs—fields(7)

OpenFlav 1.3:
NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

LAYER 4 FIELDS
TCP Source Port Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

Open vSwitch

OpenSwitch Manual

yes
yes

OXM_OF_ARP_SPA(0x80002c04), introduced in Openfald.2
NXM_OF_ARP_SPA (0x00002004), introduced in Open vSwitch 1.1

ARP Target IPv4 Address Field

arp_tpa
32bits
arbitranybitwise masks
MFP_ARP
read/write
yes(exact match only)
yes
yes
yes
yes
OXM_OF_ARP_TPA (0x80002e04), introduced in Opend.2
NXM_OF_ARP_TPA (0x00002204), introduced in Open vSwitch 1.1

ARP Source Ethernet Address Field

arp_sha
48bits
arbitrarybitwise masks
MFP_ARP
read/write
no
no
yes
yes
yes(maskable since Open vSwitch 1.9)
OXM_OF_ARP_SHA (0x80003006), introduced in Openild.2
NXM_NX_ARP_SHA (0x00012206), introduced in Open vSwitch 1.1

ARP Target Ethernet Address Field

arp_tha
48bits
arbitrarybitwise masks
MFP_ARP
read/write
no
no
yes
yes
yes (maskable since Open vSwitch 1.9)
OXM_OF_ARP_THA (0x80003206), introduced in Openfid..2
NXM_NX_ARP_THA (0x00012406), introduced in Open vSwitch 1.1

tcp_src (akatp_src)

16bits

arbitrarybitwise masks
MFP_TCP
read/write

yes(exact match only)

yes(exact match only)

UNKNGOVN

ovs—fields(7)

18

ovs—fields(7)

OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

TCP Flags Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:

Open vSwitch

OpenSwitch Manual

yes
yes

yes (maskable since Open vSwitch 1.6)
OXM_OF_TCP_SRC(0x80001a02), introduced in Open#ld.2
NXM_OF_TCP_SRC (0x00001202), introduced in Open vSwitch 1.1

TCP Destination Port Field

tcp_dst (akatp_dst)
16bits
arbitrarybitwise masks
MFP_TCP
read/write
yes(exact match only)
yes(exact match only)
yes
yes
yes (maskable since Open vSwitch 1.6)
OXM_OF_TCP_DST (0x80001c02), introduced in Opentxd..2
NXM_OF_TCP_DST (0x00001402), introduced in Open vSwitch 1.1

tcp_flags
16bits (only the least-significant 12 bits may be nonzero)
arbitranybitwise masks
MFP_TCP
read-only
no
no
yes(via NXM code point)
yes(via NXM code point)
yes
NXM_NX_TCP_FLAGS (0x00014402), introduced in Open vSwitch 2.1

UDP Source Port Field

udp_src
16bits
arbitrarybitwise masks
MFP_UDP
read/write
yes(exact match only)
yes(exact match only)
yes
yes
yes (maskable since Open vSwitch 1.6)
OXM_OF_UDP_SRC(0x80001e02), introduced in Open®#id.2
NXM_OF_UDP_SRC(0x00001602), introduced in Open vSwitch 1.1

UDP Destination Port Field

udp_dst

16bits

arbitranybitwise masks
MFP_UDP
read/write

yes(exact match only)

yes(exact match only)

yes

UNKNGOVN

ovs—fields(7)

19

ovs—fields(7)

OpenFlav 1.3:
NXM:
Code Points:

Name:
Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

ICMPv4 Type Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

ICMPv4 Code Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Open vSwitch

OpenSwitch Manual

yes
yes(maskable since Open vSwitch 1.6)
OXM_OF_UDP_DST(0x80002002), introduced in Openf#ld.2
NXM_OF_UDP_DST (0x00001802), introduced in Open vSwitch 1.1

SCTP Source Port Field

sctp_src
16bits
arbitranybitwise masks
MFP_SCTP
read/write
no
yes(exact match only)
yes
yes
yes(via OXM code point)
OXM_OF_SCTP_SRC(0x80002202), introduced in Openfald.2

SCTP Destination Port Field

sctp_dst
16bits
arbitranybitwise masks
MFP_SCTP
read/write
no
yes(exact match only)
yes
yes
yes(via OXM code point)
OXM_OF_SCTP_DST(0x80002402), introduced in Openfld.2

icmp_type
8bits
notmaskable
MFP_ICMPV4
read-only
yes
yes
yes
yes
yes
OXM_OF_ICMPV4_TYPE (0x80002601), introduced in Openfd.2
NXM_OF_ICMP_TYPE (0x00001a01), introduced in Open vSwitch 1.1

icmp_code
8bits
notmaskable

MFP_ICMPV4

read-only

yes

yes

yes

yes

yes

UNKNOVN

ovs—fields(7)

20

ovs—fields(7)

Code Points:

ICMPvV6 Type Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

ICMPv6 Code Field

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Code Points:

Name:

Width:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:
NXM:

Open vSwitch

OpenSwitch Manual

OXM_OF_ICMPV4_CODE (0x80002801), introduced in Openfld.2
NXM_OF_ICMP_CODE (0x00001c01), introduced in Open vSwitch 1.1

icmpv6_type
8bits
notmaskable
MFP_ICMPV6
read-only
no
no
yes
yes
yes
OXM_OF_ICMPV6_TYPE (0x80003a01), introduced in Opentld.2
NXM_NX_ICMPV6_TYPE (0x00012a01), introduced in Open vSwitch 1.1

icmpv6_code
8bits
notmaskable
MFP_ICMPV6
read-only
no
no
yes
yes
yes
OXM_OF_ICMPV6_CODE (0x80003c01), introduced in Openfald.2
NXM_NX_ICMPV6_CODE (0x00012c01), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target IPv6 Field

nd_target
128hits
arbitranybitwise masks
MFP_ND
read-only
no
no
yes
yes
yes (CIDR masks only before Open vSwitch 1.8)
OXM_OF_IPV6_ND_TARGET (0x80003e10), introduced in Open#a.2
NXM_NX_ND_TARGET (0x00012e10), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Source Ethernet Address Field

nd_sll

48bits

arbitranybitwise masks
MFP_ND_SOLICIT

read-only

no

no

yes

yes

yes (maskable since Open vSwitch 1.9)

UNKNGOVN

ovs—fields(7)

21

ovs—fields(7)

Code Points:

OpenSwitch Manual

OXM_OF_IPV6_ND_SLL (0x80004006), introduced in Openttld..2
NXM_NX_ND_SLL (0x00013006), introduced in Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target Ethernet Address Field

Name:
Width:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:
OpenFlav 1.2:
OpenFlav 1.3:

NXM:
Code Points:

Open vSwitch

nd_tll
48bits
arbitrarybitwise masks
MFP_ND_AYERT
read-only
no
no
yes
yes
yes(maskable since Open vSwitch 1.9)
OXM_OF_IPV6_ND_TLL (0x80004206), introduced in Openfad.2
NXM_NX_ND_TLL (0x00013206), introduced in Open vSwitch 1.1

UNKNOVN

ovs—fields(7)

22

