The following continuous distributions are available:
(x) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶(x, a, b, lambda) ¶(x, a, b, lambda) ¶Beta distribution with shape parameters a and b. The noncentral distribution takes an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <= 1, 0 <= p <= 1.
(x0, x1, rho) ¶(x0, x1, rho) ¶Bivariate normal distribution of two standard normal variables with correlation coefficient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <= 1, 0 <= p <= 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Cauchy distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(x, df) ¶(x, df) ¶(p, df) ¶(df) ¶(x, df, lambda) ¶Chi-squared distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0 <= p < 1.
(x, a) ¶(x, a) ¶(p, a) ¶(a) ¶Exponential distribution with scale parameter a. The inverse of a represents the rate of decay. Constraints: a > 0, x >= 0, 0 <= p < 1.
(x, a, b) ¶(a, b) ¶Exponential power distribution with positive scale parameter a and nonnegative power parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is a PSPP extension.
(x, df1, df2) ¶(x, df1, df2) ¶(x, df1, df2) ¶(p, df1, df2) ¶(df1, df2) ¶F-distribution of two chi-squared deviates with df1 and df2 degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df1 > 0, df2 > 0, lambda >= 0, x >= 0, 0 <= p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Gamma distribution with shape parameter a and scale parameter b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Laplace distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(c, alpha) ¶Levy symmetric alpha-stable distribution with scale c and exponent alpha. Constraints: 0 < alpha <= 2.
(c, alpha, beta) ¶Levy skew alpha-stable distribution with scale c, exponent alpha, and skewness parameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Logistic distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
(x, mu, sigma) ¶(x, mu, sigma) ¶(p, mu, sigma) ¶(mu, sigma) ¶Normal distribution with mean mu and standard deviation sigma. Constraints: b > 0, 0 < p < 1. Three additional functions are available as shorthand:
(x) ¶Equivalent to CDF.NORMAL(x, 0, 1).
(p) ¶Equivalent to IDF.NORMAL(p, 0, 1).
(sigma) ¶Equivalent to RV.NORMAL(0, sigma).
(x, a, sigma) ¶(a, sigma) ¶Normal tail distribution with lower limit a and standard deviation sigma. This distribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Pareto distribution with threshold parameter a and shape parameter b. Constraints: a > 0, b > 0, x >= a, 0 <= p < 1.
(x, sigma) ¶(x, sigma) ¶(p, sigma) ¶(sigma) ¶Rayleigh distribution with scale parameter sigma. This distribution is a PSPP extension. Constraints: sigma > 0, x > 0.
(x, a, sigma) ¶(a, sigma) ¶Rayleigh tail distribution with lower limit a and scale parameter sigma. This distribution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.
(x, df) ¶(x, df) ¶(p, df) ¶(df) ¶T-distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, 0 < p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: 0 < p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: x > 0, 0 < p < 1.
(x, a, b) ¶(x, a, b) ¶(p, a, b) ¶(a, b) ¶Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p <= 1. An additional function is available as shorthand:
(b) ¶Equivalent to RV.UNIFORM(0, b).